Global existence of solutions to the initial-boundary value problem of conservation law with degenerate diffusion term

被引:3
|
作者
Chen, Jiao
Li, Yachun [1 ]
Wang, Weike
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Classical solutions; Global existence; Conservation law; Degenerate diffusion; Frequency decomposition method; Energy method; Green's function method; ENTROPY SOLUTIONS; PARABOLIC EQUATIONS; STABILITY; UNIQUENESS;
D O I
10.1016/j.na.2012.09.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we explore the classical solutions to the conservation law with degenerate diffusion term (u(t) - Delta(x')u = div f (u), x epsilon Omega subset of R-n, t > 0, with x = (x(1), x')). We establish the global existence and exponential decay estimates to the solutions of the initial boundary value problem in domain Omega = R x Pi(n)(i=2)(O, L-i). Meanwhile, to clarify the viscous effect of the degenerate diffusion term, we also investigate the classical solutions to the Cauchy problem of the modified equation u(t) - Delta(x')u = (1 - chi (D)) div f (u), x epsilon R-n, t > 0, with chi (D) a Fourier multiplier operator, we use the frequency decomposition method to establish the global existence and the polynomial decay estimates. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:47 / 61
页数:15
相关论文
共 50 条