Vector bundles on the moduli stack of elliptic curves

被引:9
|
作者
Meier, Lennart
机构
关键词
Algebraic geometry; Moduli stack of elliptic curves; Vector bundles;
D O I
10.1016/j.jalgebra.2015.01.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study vector bundles on the moduli stack of elliptic curves over a local ring R. If R is a field or a discrete valuation ring of (residue) characteristic not 2 or 3, all these vector bundles are sums of line bundles. For R = Z((3)), we construct higher rank indecomposable vector bundles and give a classification of vector bundles that are iterated extensions of line bundles. If R = Z((2)), we show that there are even indecomposable vector bundles of arbitrary high rank. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:425 / 456
页数:32
相关论文
共 50 条
  • [21] The intersection theory of the moduli stack of vector bundles on P1
    Larson, Hannah K.
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (02): : 359 - 379
  • [22] Degenerations of the moduli spaces of vector bundles on curves .1.
    Nagaraj, DS
    Seshadri, CS
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1997, 107 (02): : 101 - 137
  • [23] ON VECTOR BUNDLES OVER MODULI SPACES TRIVIAL ON HECKE CURVES
    Biswas, Indranil
    Gomez, Tomas L.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (09) : 3613 - 3626
  • [24] Coherent state transforms and vector bundles on elliptic curves
    Florentino, CA
    Mourao, JM
    Nunes, JP
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 204 (02) : 355 - 398
  • [25] Derived Categories of Moduli Spaces of Vector Bundles on Curves II
    Narasimhan, M. S.
    [J]. GEOMETRY, ALGEBRA, NUMBER THEORY, AND THEIR INFORMATION TECHNOLOGY APPLICATIONS, 2018, 251 : 375 - 382
  • [26] Admissible subcategories in derived categories of moduli of vector bundles on curves
    Belmans, Pieter
    Mukhopadhyay, Swarnava
    [J]. ADVANCES IN MATHEMATICS, 2019, 351 : 653 - 675
  • [27] Moduli space of parabolic vector bundles over hyperelliptic curves
    Suratno Basu
    Sarbeswar Pal
    [J]. Proceedings - Mathematical Sciences, 2018, 128
  • [28] A Gieseker type degeneration of moduli stacks of vector bundles on curves
    Kausz, I
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (12) : 4897 - 4955
  • [29] Moduli space of parabolic vector bundles over hyperelliptic curves
    Basu, Suratno
    Pal, Sarbeswar
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (05):
  • [30] Local structure of the moduli space of vector bundles over curves
    Laszlo, Y
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1996, 71 (03) : 373 - 401