GLOBAL HIGHER INTEGRABILITY OF WEAK SOLUTIONS OF POROUS MEDIUM SYSTEMS

被引:6
|
作者
Moring, Kristian [1 ]
Scheven, Christoph [2 ]
Schwarzacher, Sebastian [3 ]
Singer, Thomas [4 ]
机构
[1] Aalto Univ, Dept Math & Syst Anal, POB 11100, FI-00076 Aalto, Finland
[2] Univ Duisburg Essen, Fak Math, Thea Leymann Str 9, D-45127 Essen, Germany
[3] Univ Karlovy, Katedra Matemat Anal, Matemat Fyzikalni Fak, Sokolovska 83, Prague 18675 8, Czech Republic
[4] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
关键词
Porous medium type systems; higher integrability; gradient estimates; DEGENERATE PARABOLIC EQUATIONS; SELF-IMPROVING PROPERTY; PARTIAL REGULARITY;
D O I
10.3934/cpaa.2020069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish higher integrability up to the boundary for the gradient of solutions to porous medium type systems, whose model case is given by partial derivative(t)u - Delta(vertical bar u vertical bar(m-1)u) = div F, where m > 1. More precisely, we prove that under suitable assumptions the spatial gradient D(vertical bar u vertical bar(m-1)u) of any weak solution is integrable to a larger power than the natural power 2. Our analysis includes both the case of the lateral boundary and the initial boundary.
引用
收藏
页码:1697 / 1745
页数:49
相关论文
共 50 条