Bilinear forms with Kloosterman sums and applications

被引:40
|
作者
Kowalski, Emmanuel [1 ]
Michel, Philippe [2 ]
Sawin, Will [3 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
[2] Ecole Polytech Fed Lausanne, Inst Math, Stn 8, CH-1015 Lausanne, Switzerland
[3] Swiss Fed Inst Technol, Inst Theoret Studies, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
Kloosterman sums; Kloosterman sheaves; monodromy; Riemann Hypothesis over finite fields; short exponential sums; moments of L-functions; arithmetic functions in arithmetic progressions; SHIFTED CONVOLUTION; DIVISOR FUNCTION; 2ND MOMENT;
D O I
10.4007/annals.2017.186.2.2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove nontrivial bounds for general bilinear forms in hyper-Kloosterman sums when the sizes of both variables may be below the range controlled by Fourier-analytic methods (Polya-Vinogradov range). We then derive applications to the second moment of cusp forms twisted by characters modulo primes, and to the distribution in arithmetic progressions to large moduli of certain Eisenstein-Hecke coefficients on GL(3). Our main tools are new bounds for certain complete sums in three variables over finite fields, proved using methods from algebraic geometry, especially l-adic cohomology and the Riemann Hypothesis.
引用
收藏
页码:413 / 500
页数:88
相关论文
共 50 条
  • [21] SUMS OF KLOOSTERMAN SUMS
    GOLDFELD, D
    SARNAK, P
    [J]. INVENTIONES MATHEMATICAE, 1983, 71 (02) : 243 - 250
  • [22] Bilinear forms with exponential sums with binomials
    Liu, Kui
    Shparlinski, Igor E.
    Zhang, Tianping
    [J]. JOURNAL OF NUMBER THEORY, 2018, 188 : 172 - 185
  • [23] ON KLOOSTERMAN SUMS
    VORONIN, SM
    [J]. RUSSIAN ACADEMY OF SCIENCES IZVESTIYA MATHEMATICS, 1993, 41 (02): : 229 - 271
  • [24] Sums of Kloosterman sums revisited
    Motohashi, Y.
    [J]. CONFERENCE ON L-FUNCTIONS, 2007, : 141 - 163
  • [25] Comtrans algebras, Thomas sums, and bilinear forms
    Im, B
    Smith, JDH
    [J]. ARCHIV DER MATHEMATIK, 2005, 84 (02) : 107 - 117
  • [26] Comtrans algebras, Thomas sums, and bilinear forms
    Bokhee Im
    Jonathan D. H. Smith
    [J]. Archiv der Mathematik, 2005, 84 : 107 - 117
  • [27] PETERSSON CONJECTURE FOR CUSP FORMS OF WEIGHT ZERO AND LINNIK CONJECTURE - SUMS OF KLOOSTERMAN SUMS
    KUZNECOV, NV
    [J]. MATHEMATICS OF THE USSR-SBORNIK, 1981, 39 (03): : 299 - 342
  • [28] ON SUMS OF KLOOSTERMAN AND GAUSS SUMS
    Shparlinski, Igor E.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (12) : 8679 - 8697
  • [29] Sums of multidimensional Kloosterman sums
    Shparlinski, Igor E.
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2024,
  • [30] Nonsingular bilinear forms on direct sums of ideals
    Rothkegel, Beata
    [J]. MATHEMATICA SLOVACA, 2013, 63 (04) : 707 - 724