Boundary control of a Timoshenko beam with prescribed performance

被引:6
|
作者
Ma, Junteng [1 ,2 ]
Wei, Zhengtao [1 ]
Wen, Hao [1 ]
Jin, Dongping [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, 29 Yudao St, Nanjing 210016, Jiangsu, Peoples R China
[2] Minist Agr & Rural Affairs, Nanjing Inst Agr Mechanizat, Nanjing 210014, Jiangsu, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
RIGID-FLEXIBLE MANIPULATOR; VIBRATION CONTROL; NONLINEAR-SYSTEMS; ADAPTIVE-CONTROL; TRACKING CONTROL; SPACE ROBOT; INPUT;
D O I
10.1007/s00707-020-02701-y
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper focuses on the boundary control of a Timoshenko beam with a tip mass in space. Compared with an Euler-Bernoulli beam model, the coupling of the Timoshenko beam's transverse vibration and its cross-sectional rotation makes it difficult to develop the controller. The Timoshenko beam is essentially a distributed parameter system, the motion of which can be described using partial differential equations. A prescribed performance function is introduced to the boundary control strategy to guarantee the transient and steady tracking errors. By applying the proposed controller, the outputs are ultimately restricted within a small residual set, which is arbitrarily predefined, and the minimum convergence rate can be ensured. The stability of the boundary control is analyzed using the LaSalle's invariance principle and the theoretical solutions of the Timoshenko beam model. Finally, the performance of the presented boundary controller is verified by numerical case studies.
引用
收藏
页码:3219 / 3234
页数:16
相关论文
共 50 条
  • [21] Robust Global Boundary Vibration Control of Uncertain Timoshenko Beam With Exogenous Disturbances
    Eshag, Mohamed Ahmed
    Ma, Lei
    Sun, Yongkui
    Zhang, Kai
    [J]. IEEE ACCESS, 2020, 8 : 72047 - 72058
  • [22] Control by interconnection of the Timoshenko beam
    Macchelli, A
    Melchiorri, C
    [J]. LAGRANGIAN AND HAMILTONIAN METHODS IN NONLINEAR CONTROL 2003, 2003, : 153 - 158
  • [23] Boundary control of the Timoshenko beam with free-end mass/inertial dynamics
    Zhang, F
    Dawson, DM
    de Queiroz, MS
    Vedagarbha, P
    [J]. PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 245 - 250
  • [24] Boundary control and exponential stability of a flexible Timoshenko beam manipulator with measurement delays
    Han, Fengming
    Jia, Yingmin
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (03): : 499 - 510
  • [25] Optimal control for a Timoshenko beam
    Zelikin, Michail I.
    Manita, Larissa A.
    [J]. COMPTES RENDUS MECANIQUE, 2006, 334 (05): : 292 - 297
  • [26] Exact controllability of a Timoshenko beam with dynamical boundary
    Zhang, Chun-Guo
    Hu, Hong-Xiang
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2007, 47 (03): : 643 - 655
  • [27] Nonlinear boundary stabilization for Timoshenko beam system
    Feitosa, A. J. R.
    Oliveira, M. L.
    Miranda, M. Milla
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 428 (01) : 194 - 216
  • [28] A Timoshenko beam with tip body and boundary damping
    Zietsman, L
    van Rensburg, NFJ
    van der Merwe, AJ
    [J]. WAVE MOTION, 2004, 39 (03) : 199 - 211
  • [29] BOUNDARY-CONDITIONS FOR THE TIMOSHENKO VIBRATING BEAM
    SHULZHENKO, NG
    [J]. DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1984, (08): : 57 - 59
  • [30] Nonlinear Boundary Stabilization of Nonuniform Timoshenko Beam
    Qing-xu Yan
    [J]. Acta Mathematicae Applicatae Sinica, 2003, (02) : 239 - 246