The geometric structures and instability of entropic dynamical models

被引:26
|
作者
Peng, Linyu [1 ]
Sun, Huafei [2 ]
Sun, Dandi [2 ]
Yi, Jin [3 ]
机构
[1] Univ Surrey, Dept Math, Guildford GU2 7XH, Surrey, England
[2] Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
[3] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
关键词
Information geometry; Statistical manifold; Scalar curvature; Geodesic; Jacobi field;
D O I
10.1016/j.aim.2011.02.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we characterize two entropic dynamical (ED) models from the viewpoint of information geometry and give the geometric structures of the associated statistical manifolds of the models. The scalar curvatures and the geodesics are obtained. Also the instability of entropic dynamical models is studied from the behavior of the geodesics lengths, statistical volume elements and Jacobi vector fields. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:459 / 471
页数:13
相关论文
共 50 条
  • [1] On the instability of two entropic dynamical models
    Henry, Guillermo
    Rodriguez, Daniela
    [J]. CHAOS SOLITONS & FRACTALS, 2016, 91 : 604 - 609
  • [2] ENTROPIC DYNAMICAL MODELS WITH UNSTABLE JACOBI FIELDS
    Li, C.
    Peng, L.
    Sun, H.
    [J]. ROMANIAN JOURNAL OF PHYSICS, 2015, 60 (9-10): : 1249 - 1262
  • [3] Entropic information of dynamical AdS/QCD holographic models
    Bernardini, Alex E.
    da Rocha, roldao
    [J]. PHYSICS LETTERS B, 2016, 762 : 107 - 115
  • [4] Geometric models for expandable structures
    SanchezCuenca, L
    [J]. MOBILE AND RAPIDLY ASSEMBLED STRUCTURES II, 1996, : 93 - 102
  • [5] GEOMETRIC AND DYNAMICAL MODELS OF REVERBERATION MAPPING DATA
    Pancoast, Anna
    Brewer, Brendon J.
    Treu, Tommaso
    [J]. ASTROPHYSICAL JOURNAL, 2011, 730 (02):
  • [6] BIFURCATION AND STABILITY OF DYNAMICAL STRUCTURES AT A CURRENT INSTABILITY
    BUTTIKER, M
    THOMAS, H
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1979, 34 (03): : 301 - 311
  • [7] HYPERBOLIC DYNAMICAL SYSTEMS, INVARIANT GEOMETRIC STRUCTURES, AND RIGIDITY
    Feres, Renato
    [J]. MATHEMATICAL RESEARCH LETTERS, 1994, 1 (01) : 11 - 26
  • [8] GEOMETRIC MODELS FOR SECONDARY STRUCTURES IN PROTEINS
    Toda, Magdalena
    Athukorallage, Bhagya
    [J]. PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2015, : 282 - 300
  • [9] Invariant Geometric Structures on Statistical Models
    Schwachhoefer, Lorenz
    Ay, Nihat
    Jost, Juergen
    Hong Van Le
    [J]. GEOMETRIC SCIENCE OF INFORMATION, GSI 2015, 2015, 9389 : 150 - 158
  • [10] POLYHEDRAL MODELS AND GEOMETRIC STRUCTURES FOR NANOTUBES
    Lee, Richard K. F.
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 83 (03) : 522 - 524