Invariant Geometric Structures on Statistical Models

被引:1
|
作者
Schwachhoefer, Lorenz [1 ]
Ay, Nihat [2 ]
Jost, Juergen [2 ]
Hong Van Le [3 ]
机构
[1] Tech Univ Dortmund, Vogelpothsweg 87, D-44221 Dortmund, Germany
[2] Max Planck Inst Math Nat Wissensch, D-04103 Leipzig, Germany
[3] Math Inst ASCR, Prague 11567, Czech Republic
关键词
D O I
10.1007/978-3-319-25040-3_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We review the notion of parametrized measure models and tensor fields on them, which encompasses all statistical models considered by Chentsov [6], Amari [3] and Pistone-Sempi [10]. We give a complete description of n-tensor fields that are invariant under sufficient statistics. In the cases n = 2 and n = 3, the only such tensors are the Fisher metric and the Amari-Chentsov tensor. While this has been shown by Chentsov [7] and Campbell [5] in the case of finite measure spaces, our approach allows to generalize these results to the cases of infinite sample spaces and arbitrary n. Furthermore, we give a generalisation of the monotonicity theorem and discuss its consequences.
引用
收藏
页码:150 / 158
页数:9
相关论文
共 50 条
  • [1] BRST-INVARIANT DEFORMATIONS OF GEOMETRIC STRUCTURES IN SIGMA MODELS
    Bytsenko, A. A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (22): : 3769 - 3780
  • [2] INVARIANT GEOMETRIC STRUCTURES AND LIE FOLIATIONS
    ELKACIMIALAOUI, A
    NICOLAU, M
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1990, 1 (03): : 323 - 333
  • [3] Invariant rigid geometric structures and expanding maps
    Fang, Yong
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 : 941 - 959
  • [4] Parameterisation invariant statistical shape models
    Karlsson, J
    Ericsson, A
    Åström, K
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, 2004, : 23 - 26
  • [5] Geometric models for expandable structures
    SanchezCuenca, L
    MOBILE AND RAPIDLY ASSEMBLED STRUCTURES II, 1996, : 93 - 102
  • [6] Geometric Models of the Statistical Theory of Fragmentation
    Yu. P. Virchenko
    O. I. Sheremet
    Theoretical and Mathematical Physics, 2001, 128 : 969 - 982
  • [7] Geometric models for quantum statistical inference
    Brody, DC
    Hughston, LP
    GEOMETRIC UNIVERSE: SCIENCE, GEOMETRY, AND THE WORK OF ROGER PENROSE, 1998, : 265 - 276
  • [8] Geometric models of the statistical theory of fragmentation
    Virchenko, YP
    Sheremet, OI
    THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 128 (02) : 969 - 982
  • [9] Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations
    Guysinsky, M
    Katok, A
    MATHEMATICAL RESEARCH LETTERS, 1998, 5 (1-2) : 149 - 163
  • [10] INVARIANT RIGID GEOMETRIC STRUCTURES AND SMOOTH PROJECTIVE FACTORS
    Nevo, Amos
    Zimmer, Robert J.
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (02) : 520 - 535