Verifying Binarized Neural Networks by Angluin-Style Learning

被引:22
|
作者
Shih, Andy [1 ]
Darwiche, Adnan [1 ]
Choi, Arthur [1 ]
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90024 USA
关键词
Verification; Neural networks; Decision Diagrams; KNOWLEDGE COMPILATION;
D O I
10.1007/978-3-030-24258-9_25
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of verifying the behavior of binarized neural networks on some input region. We propose an Angluin-style learning algorithm to compile a neural network on a given region into an Ordered Binary Decision Diagram (OBDD), using a SAT solver as an equivalence oracle. The OBDD allows us to efficiently answer a range of verification queries, including counting, computing the probability of counterexamples, and identifying common characteristics of counterexamples. We also present experimental results on verifying binarized neural networks that recognize images of handwritten digits.
引用
收藏
页码:354 / 370
页数:17
相关论文
共 50 条
  • [1] Angluin-Style Learning of NFA
    Bollig, Benedikt
    Habermehl, Peter
    Kern, Carsten
    Leucker, Martin
    [J]. 21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 1004 - 1009
  • [2] Portfolio solver for verifying Binarized Neural Networks
    Kovasznai, Gergely
    Gajdar, Krisztian
    Narodytska, Nina
    [J]. ANNALES MATHEMATICAE ET INFORMATICAE, 2021, 53 : 183 - 200
  • [3] Verifying Properties of Binarized Deep Neural Networks
    Narodytska, Nina
    Kasiviswanathan, Shiva
    Ryzhyk, Leonid
    Sagiv, Mooly
    Walsh, Toby
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 6615 - 6624
  • [4] Binarized Neural Networks
    Hubara, Itay
    Courbariaux, Matthieu
    Soudry, Daniel
    El-Yaniv, Ran
    Bengio, Yoshua
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [5] Leveraging Stochasticity for In Situ Learning in Binarized Deep Neural Networks
    Pyle, Steven D.
    Sapp, Justin D.
    DeMara, Ronald F.
    [J]. COMPUTER, 2019, 52 (05) : 30 - 39
  • [6] Memristor Binarized Neural Networks
    Khoa Van Pham
    Tien Van Nguyen
    Son Bao Tran
    Nam, Hyunkyung
    Lee, Mi Jung
    Choi, Byung Joon
    Son Ngoc Truong
    Min, Kyeong-Sik
    [J]. JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 2018, 18 (05) : 568 - 577
  • [7] A Review of Binarized Neural Networks
    Simons, Taylor
    Lee, Dah-Jye
    [J]. ELECTRONICS, 2019, 8 (06)
  • [8] On Class-Incremental Learning for Fully Binarized Convolutional Neural Networks
    Basso-Bert, Yanis
    Guiequero, William
    Molnos, Anca
    Lemaire, Romain
    Dupret, Antoine
    [J]. 2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [9] Synaptic metaplasticity in binarized neural networks
    Axel Laborieux
    Maxence Ernoult
    Tifenn Hirtzlin
    Damien Querlioz
    [J]. Nature Communications, 12
  • [10] Synaptic metaplasticity in binarized neural networks
    Laborieux, Axel
    Ernoult, Maxence
    Hirtzlin, Tifenn
    Querlioz, Damien
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)