On Class-Incremental Learning for Fully Binarized Convolutional Neural Networks

被引:1
|
作者
Basso-Bert, Yanis [1 ]
Guiequero, William [2 ]
Molnos, Anca [1 ]
Lemaire, Romain [1 ]
Dupret, Antoine [2 ]
机构
[1] Univ Grenoble Alpes, CEA, List, F-38000 Grenoble, France
[2] Univ Grenoble Alpes, CEA, Leti, Grenoble, France
来源
2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024 | 2024年
关键词
Binary Neural Networks; Incremental Learning; Latent Replay; Focal Loss; Imbalanced dataset; MEMORY;
D O I
10.1109/ISCAS58744.2024.10558661
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recent advances in Binary Neural Networks (BNNs) are opening up new possibilities for disruptive hardware accelerators. This paper extends prior work on incremental learning to BNNs, by proposing a specifically-designed fully-binarized network and evaluating it on two learning variants, i.e., native and latent replay. The proposed BNN achieves a 53.3% test accuracy on the CIFAR-100 benchmark while relying on a binary-only arithmetic, for a 4.1Mb model size. Given a class-incremental learning experimental setup, we evaluate the influence of replay buffer size on the strategy, highlighting a turning point where latent replay offers a better classification performance than Native replay. In addition, our approach exhibits robustness against a large number of successive retrainings with an accuracy always 10% higher than a full-precision counterpart.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Class-Incremental Learning of Convolutional Neural Networks Based on Double Consolidation Mechanism
    Jin, Leilei
    Liang, Hong
    Yang, Changsheng
    IEEE ACCESS, 2020, 8 : 172553 - 172562
  • [2] Memory Efficient Invertible Neural Networks for Class-Incremental Learning
    Hocquet, Guillaume
    Bichler, Olivier
    Querlioz, Damien
    2021 IEEE 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS), 2021,
  • [3] Class-Incremental Exemplar Compression for Class-Incremental Learning
    Luo, Zilin
    Liu, Yaoyao
    Schiele, Bernt
    Sun, Qianru
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 11371 - 11380
  • [4] Adaptive Aggregation Networks for Class-Incremental Learning
    Liu, Yaoyao
    Schiele, Bernt
    Sun, Qianru
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 2544 - 2553
  • [5] iNeMo: Incremental Neural Mesh Models for Robust Class-Incremental Learning
    Fischer, Tom
    Liu, Yaoyao
    Jesslen, Artur
    Ahmed, Noor
    Kaushik, Prakhar
    Wang, Angtian
    Yuille, Alan L.
    Kortylewski, Adam
    Ilg, Eddy
    COMPUTER VISION - ECCV 2024, PT LXXVII, 2024, 15135 : 357 - 374
  • [6] BitFlow-Net: Toward Fully Binarized Convolutional Neural Networks
    Wu, Lijun
    Jiang, Peiqing
    Chen, Zhicong
    Lin, Xu
    Lai, Yunfeng
    Lin, Peijie
    Cheng, Shuying
    IEEE ACCESS, 2019, 7 : 154617 - 154626
  • [7] INCREMENTAL LEARNING OF CONVOLUTIONAL NEURAL NETWORKS
    Medera, Dusan
    Babinec, Stefan
    IJCCI 2009: PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE, 2009, : 547 - +
  • [8] CLASS-INCREMENTAL LEARNING WITH REPETITION
    Hemati, Hamed
    Cossu, Andrea
    Carta, Antonio
    Hurtado, Julio
    Pellegrini, Lorenzo
    Bacciu, Davide
    Lomonaco, Vincenzo
    Borth, Damian
    CONFERENCE ON LIFELONG LEARNING AGENTS, VOL 232, 2023, 232 : 437 - 455
  • [9] Class-Incremental Learning: A Survey
    Zhou, Da-Wei
    Wang, Qi-Wei
    Qi, Zhi-Hong
    Ye, Han-Jia
    Zhan, De-Chuan
    Liu, Ziwei
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 9851 - 9873
  • [10] Federated Class-Incremental Learning
    Dong, Jiahua
    Wang, Lixu
    Fang, Zhen
    Sun, Gan
    Xu, Shichao
    Wang, Xiao
    Zhu, Qi
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 10154 - 10163