Aggregating Time Series and Tabular Data in Deep Learning Model for University Students' GPA Prediction

被引:8
|
作者
Prabowo, Harjanto [1 ]
Hidayat, Alam Ahmad [2 ]
Cenggoro, Tjeng Wawan [2 ,3 ]
Rahutomo, Reza [2 ]
Purwandari, Kartika [2 ]
Pardamean, Bens [2 ,4 ]
机构
[1] Bina Nusantara Univ, Management Dept, BINUS Business Sch Undergrad Program, Jakarta 11480, Indonesia
[2] Bina Nusantara Univ, Bioinformat & Data Sci Res Ctr, Jakarta 11480, Indonesia
[3] Bina Nusantara Univ, Sch Comp Sci, Comp Sci Dept, Jakarta 11480, Indonesia
[4] Bina Nusantara Univ, BINUS Grad Program, Comp Sci Dept, Master Comp Sci Program, Jakarta 11480, Indonesia
关键词
Educational data mining; deep learning; GPA prediction; time-series data; tabular data; PERFORMANCE;
D O I
10.1109/ACCESS.2021.3088152
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current approaches of university students' Grade Point Average (GPA) prediction rely on the use of tabular data as input. Intuitively, adding historical GPA data can help to improve the performance of a GPA prediction model. In this study, we present a dual-input deep learning model that is able to simultaneously process time-series and tabular data for predicting student GPA. Our proposed model achieved the best performance among all tested models with 0.4142 MSE (Mean Squared Error) and 0.418 MAE (Mean Absolute Error) for GPA with a 4.0 scale. It also has the best R-2-score of 0.4879, which means it explains the true distribution of students' GPA better than other models.
引用
收藏
页码:87370 / 87377
页数:8
相关论文
共 50 条
  • [41] Special issue on deep learning for time series data
    Ma, Ruizhe
    Angryk, Rafal
    Scherer, Rafal
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (16): : 13147 - 13148
  • [42] Deep compartment models: A deep learning approach for the reliable prediction of time-series data in pharmacokinetic modeling
    Janssen, Alexander
    Leebeek, Frank W. G.
    Cnossen, Marjon H.
    Mathot, Ron A. A.
    [J]. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2022, 11 (07): : 934 - 945
  • [43] Special issue on deep learning for time series data
    Ruizhe Ma
    Rafal Angryk
    Rafal Scherer
    [J]. Neural Computing and Applications, 2022, 34 : 13147 - 13148
  • [44] Dense Representation Learning and Retrieval for Tabular Data Prediction
    Zheng, Lei
    Li, Ning
    Chen, Xianyu
    Gan, Quan
    Zhang, Weinan
    [J]. PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 3559 - 3569
  • [45] Ice prediction for wind turbine rotor blades with time series data and a deep learning approach
    Kreutz, Markus
    Alla, Abderrahim Ait
    Luetjen, Michael
    Ohlendorf, Jan-Hendrik
    Freitag, Michael
    Thoben, Klaus-Dieter
    Zimnol, Florian
    Greulich, Andreas
    [J]. COLD REGIONS SCIENCE AND TECHNOLOGY, 2023, 206
  • [46] Time Series Prediction Using Deep Learning Methods in Healthcare
    Morid, Mohammad Amin
    Sheng, Olivia R. Liu
    Dunbar, Joseph
    [J]. ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS, 2023, 14 (01)
  • [47] Retail Time Series Prediction Based on EMD and Deep Learning
    Mou, Shucheng
    Ji, Yang
    Tian, Chujie
    [J]. PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON NETWORK INFRASTRUCTURE AND DIGITAL CONTENT (IEEE IC-NIDC), 2018, : 425 - 430
  • [48] Computer Model Calibration with Time Series Data Using Deep Learning and Quantile Regression
    Bhatnagar, Saumya
    Chang, Won
    Kim, Seonjin
    Wang, Jiali
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (01): : 1 - 26
  • [49] Urban and regional distinctions for aggregating time series data
    Cutler, Harvey
    England, Scott
    Weiler, Stephan
    [J]. PAPERS IN REGIONAL SCIENCE, 2007, 86 (04) : 575 - 595
  • [50] TableNN: Deep Learning Framework for Learning Domain Specific Tabular Data
    Sankhe, Pranav
    Khabiri, Elham
    Agrawal, Bhavna
    Li, Yingjie
    [J]. Proceedings - 2021 IEEE International Conference on Big Data, Big Data 2021, 2021, : 4097 - 4102