Adaptive density matrix renormalization group for disordered systems

被引:8
|
作者
Xavier, J. C. [1 ]
Hoyos, Jose A. [2 ]
Miranda, E. [3 ]
机构
[1] Univ Fed Uberlandia, Inst Fis, CP 593, BR-38400902 Uberlandia, MG, Brazil
[2] Univ Sao Paulo, Inst Fis Sao Carlos, CP 369, BR-13560970 Sao Carlos, SP, Brazil
[3] Univ Estadual Campinas, Inst Fis Gleb Wataghin, Rua Sergio Buarque de Holanda 777, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
QUANTUM SPIN SYSTEMS; CHAINS; ENTANGLEMENT; BEHAVIOR; PHASE;
D O I
10.1103/PhysRevB.98.195115
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a simple modification of the density matrix renormalization-group (DMRG) method in order to tackle strongly disordered quantum spin chains. Our proposal, akin to the idea of the adaptive time-dependent DMRG, enables us to reach larger system sizes in the strong disorder limit by avoiding most of the metastable configurations, which hinder the performance of the standard DMRG method. We benchmark our adaptive method by revisiting the random antiferromagnetic XXZ spin-1/2 chain for which we compute the random-singlet ground-state average spin-spin correlation functions and von Neumann entanglement entropy. We then apply our method to the bilinear-biquadratic random antiferromagnetic spin-1 chain tuned to the antiferromagnet and gapless highly symmetric SU(3) point. We find the new result that the mean correlation function decays algebraically with the same universal exponent phi = 2 as the spin-1/2 chain. We then perform numerical and analytical strong-disorder renormalization-group calculations, which confirm this finding and generalize it for any highly symmetric SU(N) random-singlet state.
引用
收藏
页数:9
相关论文
共 50 条