Quasi-probability distributions for the simplest dynamical groups

被引:21
|
作者
Klimov, AB [1 ]
Chumakov, SM [1 ]
机构
[1] Univ Guadalajara, Dept Fis, Guadalajara 44420, Jalisco, Mexico
关键词
D O I
10.1364/JOSAA.17.002315
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We prove that the Wigner-Stratonovich-Agarwal operator that defines the quasi-probability distribution on the sphere [for the SU(2) dynamical group] can be written as an integral of the SU(2) (irreducible unitary) representation element with respect to a single variable that labels the orbits in the coadjoint representation. This allows us to consider contractions of the SU(2) quasi-probability distribution to the cases of the Heisenberg-Weyl group and the two-dimensional Euclidean group. (C) 2000 Optical Society of America [s0740-3232(00)03512-2] OCIS code: 000.1600.
引用
收藏
页码:2315 / 2318
页数:4
相关论文
共 50 条
  • [21] QUASI-PROBABILITY DISTRIBUTIONS FOR THE 3-LEVEL JAYNES-CUMMINGS MODEL
    HUYEN, ND
    DUNG, HT
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1994, 8 (10): : 1343 - 1354
  • [22] ANALYTIC SOLUTION FOR QUASI-PROBABILITY DISTRIBUTIONS OF THE JAYNES-CUMMINGS MODEL WITH CAVITY DAMPING
    DAEUBLER, B
    RISKEN, H
    SCHOENDORFF, L
    PHYSICAL REVIEW A, 1993, 48 (05): : 3955 - 3965
  • [23] QUASI-PROBABILITY APPROACH TO COOPERATIVE SPONTANEOUS EMISSION
    IKEDA, K
    ITO, H
    PROGRESS OF THEORETICAL PHYSICS, 1975, 54 (03): : 654 - 668
  • [24] Negative quasi-probability as a resource for quantum computation
    Veitch, Victor
    Ferrie, Christopher
    Gross, David
    Emerson, Joseph
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [25] A study of the quasi-probability distributions of the Tavis-Cummings model under different quantum channels
    Tiwari, Devvrat
    Banerjee, Subhashish
    ANNALS OF PHYSICS, 2023, 455
  • [26] Quasi-probability distribution for Laughlin state vectors
    Fan, HY
    Lin, JX
    MODERN PHYSICS LETTERS B, 2001, 15 (14): : 463 - 472
  • [27] Extension of Dirac's chord method to the case of a nonconvex set by the use of quasi-probability distributions
    Vlasov, Alexander Yu.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [28] Quasi-Probability Distribution Functions for Optical-Polarization
    Singh, Ravi S.
    Singh, Sunil P.
    Gupta, Gyaneshwar K.
    PHOTONICS 2010: TENTH INTERNATIONAL CONFERENCE ON FIBER OPTICS AND PHOTONICS, 2011, 8173
  • [29] GENERALIZED PARITY AND QUASI-PROBABILITY DENSITY-FUNCTIONS
    BENEDICT, MG
    CZIRJAK, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (16): : 4599 - 4608