Quasi-probability distributions for the simplest dynamical groups

被引:21
|
作者
Klimov, AB [1 ]
Chumakov, SM [1 ]
机构
[1] Univ Guadalajara, Dept Fis, Guadalajara 44420, Jalisco, Mexico
关键词
D O I
10.1364/JOSAA.17.002315
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We prove that the Wigner-Stratonovich-Agarwal operator that defines the quasi-probability distribution on the sphere [for the SU(2) dynamical group] can be written as an integral of the SU(2) (irreducible unitary) representation element with respect to a single variable that labels the orbits in the coadjoint representation. This allows us to consider contractions of the SU(2) quasi-probability distribution to the cases of the Heisenberg-Weyl group and the two-dimensional Euclidean group. (C) 2000 Optical Society of America [s0740-3232(00)03512-2] OCIS code: 000.1600.
引用
收藏
页码:2315 / 2318
页数:4
相关论文
共 50 条
  • [1] Quasi-probability distributions for the simplest dynamical groups
    Klimov, A.B.
    Chiumakov, S.M.
    [J]. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2000, 17 (12): : 2315 - 2318
  • [2] COVARIANCE FOR QUASI-PROBABILITY DISTRIBUTIONS
    COHEN, L
    [J]. FOUNDATIONS OF PHYSICS, 1976, 6 (06) : 739 - 741
  • [3] Quantum Fourier transform, Heisenberg groups and quasi-probability distributions
    Patra, Manas K.
    Braunstein, Samuel L.
    [J]. NEW JOURNAL OF PHYSICS, 2011, 13
  • [4] Quasi-probability distributions for observables in dynamic systems
    Hofer, Patrick P.
    [J]. QUANTUM, 2017, 1
  • [5] QUASI-PROBABILITY DISTRIBUTIONS OF NEGATIVE BINOMIAL STATES
    DSOUZA, R
    MISHRA, AP
    [J]. PHYSICAL REVIEW A, 1992, 45 (09): : 6925 - 6927
  • [6] Quasi-probability distributions in loop quantum cosmology
    Berra-Montiel, Jasel
    Molgado, Alberto
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (21)
  • [7] Current and quasi-probability phase-space distributions
    Loughlin, P
    Cohen, L
    [J]. JOURNAL OF MODERN OPTICS, 2003, 50 (15-17) : 2305 - 2329
  • [8] Interference effects on the quasi-probability distributions of the electromagnetic field
    Moraes, AM
    Souza, MJFS
    Dantas, CMA
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 291 (1-4) : 467 - 484
  • [9] REALISTIC OPTICAL HOMODYNE MEASUREMENTS AND QUASI-PROBABILITY DISTRIBUTIONS
    LEONHARDT, U
    PAUL, H
    [J]. PHYSICAL REVIEW A, 1993, 48 (06): : 4598 - 4604
  • [10] DYNAMIC EQUATIONS FOR QUASI-PROBABILITY DISTRIBUTIONS IN QUANTUM-MECHANICS
    ZLATEV, IS
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1979, 32 (05): : 587 - 590