Robust and sparse bridge regression

被引:0
|
作者
Li, Bin [1 ]
Yu, Qingzhao [2 ]
机构
[1] Louisiana State Univ, Dept Expt Stat, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Hlth Sci Ctr, Sch Publ Hlth, Baton Rouge, LA 70803 USA
关键词
Coordinate descent; DC programming; Huber loss; Local linear approximation; Regularization; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; LASSO;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is known that when there are heavy-tailed errors or outliers in the response, the least squares methods may fail to produce a reliable estimator. In this paper, we proposed a generalized Huber criterion which is highly flexible and robust for large errors. We applied the new criterion to the bridge regression family, called robust and sparse bridge regression (RSBR). However, to get the RSBR solution requires solving a nonconvex minimization problem, which is a computational challenge. On the basis of recent advances in difference convex programming, coordinate descent algorithm and local linear approximation, we provide an efficient computational algorithm that attempts to solve this nonconvex problem. Numerical examples show the proposed RSBR algorithm performs well and suitable for large-scale problems.
引用
收藏
页码:481 / 491
页数:11
相关论文
共 50 条
  • [1] Robust and sparse logistic regression
    Cornilly, Dries
    Tubex, Lise
    Van Aelst, Stefan
    Verdonck, Tim
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024, 18 (03) : 663 - 679
  • [2] Robust sparse functional regression model
    Pannu, Jasdeep
    Billor, Nedret
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (09) : 4883 - 4903
  • [3] High Dimensional Robust Sparse Regression
    Liu, Liu
    Shen, Yanyao
    Li, Tianyang
    Caramanis, Constantine
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 411 - 420
  • [4] Sparse Robust Regression for Explaining Classifiers
    Bjorklund, Anton
    Henelius, Andreas
    Oikarinen, Emilia
    Kallonen, Kimmo
    Puolamaki, Kai
    [J]. DISCOVERY SCIENCE (DS 2019), 2019, 11828 : 351 - 366
  • [5] Robust and Sparse Regression via γ-Divergence
    Kawashima, Takayuki
    Fujisawa, Hironori
    [J]. ENTROPY, 2017, 19 (11):
  • [6] Sparse partial robust M regression
    Hoffmann, Irene
    Serneels, Sven
    Filzmoser, Peter
    Croux, Christophe
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 149 : 50 - 59
  • [7] Penalized robust estimators in sparse logistic regression
    Ana M. Bianco
    Graciela Boente
    Gonzalo Chebi
    [J]. TEST, 2022, 31 : 563 - 594
  • [8] Penalized robust estimators in sparse logistic regression
    Bianco, Ana M.
    Boente, Graciela
    Chebi, Gonzalo
    [J]. TEST, 2022, 31 (03) : 563 - 594
  • [9] Robust jointly sparse regression and its applications
    Dongmei Mo
    Zhihui Lai
    Yuyang Meng
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2018, 9 : 1797 - 1807
  • [10] Robust jointly sparse regression and its applications
    Mo, Dongmei
    Lai, Zhihui
    Meng, Yuyang
    [J]. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2018, 9 (06) : 1797 - 1807