Adaptive time stepping for commutator free Lie group integrators

被引:0
|
作者
Owren, Brynjulf [1 ]
Curry, Charles [2 ]
机构
[1] Norwegian Univ Sci & Technol, Alfred Getz Vei 1, N-7491 Trondheim, Norway
[2] Norwegian Univ Sci & Technol, Teknologivegen 22, N-2815 Gjovik, Norway
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 09期
关键词
Numerical methods; Algorithms; Geometric approaches; Differential equations; Differential geometric methods; ORDINARY DIFFERENTIAL-EQUATIONS; RUNGE-KUTTA METHODS; MANIFOLDS;
D O I
10.1016/j.ifacol.2021.06.068
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lie group integrators are steadily gaining popularity in many application areas. Until recently, there has been little work on Lie group integrators with adaptive time stepping. The most popular method for automatic step size selection seems in general to be that of embedded pairs of methods. For schemes that can be interpreted via local parameterisations, error estimation and step size selection can be determined in the parameter space. However, not all Lie group integrators fall into this class. Commutator-free Lie group integrators or Crouch-Grossman methods do not have such an interpretation. The problem can be resolved by using non-commutative order conditions. We develop new examples of embedded pairs of commutator-free Lie group integrators of orders 3(2) and 4(3), based on earlier work by Curry, C. and Owren, B. (2019). Variable step size commutator-free Lie group integrators. Numer. Algorithms, 82(4), 1359-1376 where optimal pairs in terms of flow calculations and vector field evaluations per step were derived for orders 3(2) and 4(3). In particular we introduce a non-optimal embedded pair of orders 4(3) that actually behave better than the optimal ones for a popular test case, the heavy top. Copyright (C) 2021 The Authors.
引用
收藏
页码:103 / 107
页数:5
相关论文
共 50 条
  • [1] Variable step size commutator free Lie group integrators
    Charles Curry
    Brynjulf Owren
    [J]. Numerical Algorithms, 2019, 82 : 1359 - 1376
  • [2] Variable step size commutator free Lie group integrators
    Curry, Charles
    Owren, Brynjulf
    [J]. NUMERICAL ALGORITHMS, 2019, 82 (04) : 1359 - 1376
  • [3] Commutator-free Lie group methods
    Celledoni, E
    Marthinsen, A
    Owren, B
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2003, 19 (03): : 341 - 352
  • [4] On the Use of Lie Group Time Integrators in Multibody Dynamics
    Bruls, Olivier
    Cardona, Alberto
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2010, 5 (03): : 1 - 13
  • [5] Order conditions for commutator-free Lie group methods
    Owren, Brynjulf
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (19): : 5585 - 5599
  • [6] Exponential Integrators for Resistive Magnetohydrodynamics: Matrix-free Leja Interpolation and Efficient Adaptive Time Stepping
    Deka, Pranab J.
    Einkemmer, Lukas
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2022, 259 (02):
  • [7] Convergence of Lie group integrators
    Charles Curry
    Alexander Schmeding
    [J]. Numerische Mathematik, 2020, 144 : 357 - 373
  • [8] Stochastic Lie group integrators
    Malham, Simon J. A.
    Wiese, Anke
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (02): : 597 - 617
  • [9] Convergence of Lie group integrators
    Curry, Charles
    Schmeding, Alexander
    [J]. NUMERISCHE MATHEMATIK, 2020, 144 (02) : 357 - 373
  • [10] On commutator ideals in free Lie algebras
    Abarbanel, J
    [J]. JOURNAL OF ALGEBRA, 2006, 296 (02) : 323 - 338