Convergence of Lie group integrators

被引:0
|
作者
Charles Curry
Alexander Schmeding
机构
[1] NTNU Trondheim,
[2] TU Berlin,undefined
来源
Numerische Mathematik | 2020年 / 144卷
关键词
Primary 65L20; Secondary 22F30; 53C30;
D O I
暂无
中图分类号
学科分类号
摘要
We relate two notions of local error for integration schemes on Riemannian homogeneous spaces, and show how to derive global error estimates from such local bounds. In doing so, we prove for the first time that the Lie–Butcher theory of Lie group integrators leads to global error estimates.
引用
收藏
页码:357 / 373
页数:16
相关论文
共 50 条
  • [1] Convergence of Lie group integrators
    Curry, Charles
    Schmeding, Alexander
    [J]. NUMERISCHE MATHEMATIK, 2020, 144 (02) : 357 - 373
  • [2] Stochastic Lie group integrators
    Malham, Simon J. A.
    Wiese, Anke
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (02): : 597 - 617
  • [3] Lie group integrators for mechanical systems
    Celledoni, Elena
    Cokaj, Ergys
    Leone, Andrea
    Murari, Davide
    Owren, Brynjulf
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (01) : 58 - 88
  • [4] Lie Group Spectral Variational Integrators
    James Hall
    Melvin Leok
    [J]. Foundations of Computational Mathematics, 2017, 17 : 199 - 257
  • [5] Lie Group Spectral Variational Integrators
    Hall, James
    Leok, Melvin
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2017, 17 (01) : 199 - 257
  • [6] Lie group foliations: dynamical systems and integrators
    McLachlan, RI
    Perlmutter, M
    Quispel, GRW
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2003, 19 (07): : 1207 - 1219
  • [7] Lie Group Integrators for Animation and Control of Vehicles
    Kobilarov, Marin
    Crane, Keenan
    Desbrun, Mathieu
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (02):
  • [8] On the Hopf algebraic structure of Lie group integrators
    Munthe-Kaas, H. Z.
    Wright, W. M.
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2008, 8 (02) : 227 - 257
  • [9] On the Hopf Algebraic Structure of Lie Group Integrators
    H.Z. Munthe-Kaas
    W.M. Wright
    [J]. Foundations of Computational Mathematics, 2008, 8 : 227 - 257
  • [10] Lie group variational integrators for the full body problem
    Lee, Taeyoung
    Leok, Melvin
    McClamroch, N. Harris
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (29-30) : 2907 - 2924