A Monolithic Arbitrary Lagrangian-Eulerian Finite Element Analysis for a Stokes/Parabolic Moving Interface Problem

被引:6
|
作者
Lan, Rihui [1 ]
Sun, Pengtao [1 ]
机构
[1] Univ Nevada, Dept Math Sci, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA
关键词
Stokes/parabolic interface problem; Arbitrary Lagrangian-Eulerian (ALE) mapping; H-1-projection; Mixed finite element; Optimal error estimates; Stability analysis; FLUID-STRUCTURE INTERACTION; FORMULATION; FLOW; SCHEME;
D O I
10.1007/s10915-020-01161-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an arbitrary Lagrangian-Eulerian (ALE)-finite element method (FEM) is developed within the monolithic approach for a moving-interface model problem of a transient Stokes/parabolic coupling with jump coefficients-a linearized fluid-structure interaction (FSI) problem. A new H-1-projection is defined for this problem for the first time to account for the mesh motion due to the moving interface. The well-posedness and optimal convergence properties in both the energy norm and L-2 norm are analyzed for this mixed-type H-1-projection, with which the stability and optimal error estimate in the energy norm are derived for both semi- and fully discrete mixed finite element approximations to the Stokes/parabolic interface problem. Numerical experiments are carried out to validate all theoretical results. The developed analytical approach can be extended to a general FSI problem.
引用
收藏
页数:36
相关论文
共 50 条
  • [21] 3-D sloshing analysis by an arbitrary Lagrangian-Eulerian finite element method
    Okamoto, T
    Kawahara, M
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 1997, 8 (02) : 129 - 146
  • [22] Monolithic Arbitrary Lagrangian-Eulerian Finite Element Method for a Multi-domain Blood Flow-Aortic Wall Interaction Problem
    Sun, Pengtao
    Zhang, Chen-Song
    Lan, Rihui
    Li, Lin
    [J]. COMPUTATIONAL SCIENCE - ICCS 2020, PT VII, 2020, 12143 : 60 - 74
  • [23] AN ADAPTIVE IMMERSED FINITE ELEMENT METHOD WITH ARBITRARY LAGRANGIAN-EULERIAN SCHEME FOR PARABOLIC EQUATIONS IN TIME VARIABLE DOMAINS
    Chen, Zhiming
    Wu, Zedong
    Xiao, Yuanming
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2015, 12 (03) : 567 - 591
  • [24] EMPLOYMENT OF EULERIAN, LAGRANGIAN, AND ARBITRARY LAGRANGIAN-EULERIAN DESCRIPTION FOR CRACK OPENING PROBLEM
    Ivanova, E. A.
    Matyas, D., V
    Stepanov, M. D.
    [J]. MATERIALS PHYSICS AND MECHANICS, 2019, 42 (04): : 470 - 483
  • [25] On friction modeling in orthogonal machining: An Arbitrary Lagrangian-Eulerian finite element model
    Haglund, AJ
    Kishawy, HA
    Rogers, RJ
    [J]. Transactions of the North American Manufacturing Research Institution of SME 2005, Vol 33, 2005, 2005, 33 : 589 - 596
  • [26] ARBITRARY LAGRANGIAN-EULERIAN THERMOMECHANICAL FINITE-ELEMENT MODEL OF MATERIAL CUTTING
    RAKOTOMALALA, R
    JOYOT, P
    TOURATIER, M
    [J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1993, 9 (12): : 975 - 987
  • [27] FINITE ELEMENT MODELING OF OBLIQUE MACHINING USING AN ARBITRARY LAGRANGIAN-EULERIAN FORMULATION
    Llanos, I.
    Villar, J. A.
    Urresti, I.
    Arrazola, P. J.
    [J]. MACHINING SCIENCE AND TECHNOLOGY, 2009, 13 (03) : 385 - 406
  • [28] An exploration of friction models for the chip-tool interface using an Arbitrary Lagrangian-Eulerian finite element model
    Haglund, A. J.
    Kishawy, H. A.
    Rogers, R. J.
    [J]. WEAR, 2008, 265 (3-4) : 452 - 460
  • [29] Optimal convergence of arbitrary Lagrangian-Eulerian iso-parametric finite element methods for parabolic equations in an evolving domain
    Li, Buyang
    Xia, Yinhua
    Yang, Zongze
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (01) : 501 - 534
  • [30] An energy diminishing arbitrary Lagrangian-Eulerian finite element method for two-phase Navier-Stokes flow
    Duan, Beiping
    Li, Buyang
    Yang, Zongze
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 461