Development of a web monitor for the water Cherenkov detectors array of the LAGO project

被引:0
|
作者
Otiniano, Luis [1 ]
Sidelnik, Ivan [2 ,3 ]
机构
[1] CONIDA, Comis Nacl Invest & Desarrollo Aeroespacial, Lima 1069, Peru
[2] Consejo Nacl Invest Cient & Tecn, Dept Fis Neutrones, Av Bustillo 9500, RA-8400 San Carlos De Bariloche, Argentina
[3] Inst Balseiro, Av Bustillo 9500, RA-8400 San Carlos De Bariloche, Argentina
[4] Latin Amer Giant Observ, San Carlos De Bariloche, Rio Negro, Argentina
关键词
Water Cherenkov detectors; LAGO project; Cosmic rays;
D O I
10.1016/j.nima.2019.02.035
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The Latin American Giant Observatory (LAGO) consists of a network of water Cherenkov detectors installed in the Andean region at various latitudes, from Sierra Negra in Mexico 18 degrees 59' N to the Antarctic Peninsula 64 degrees 14' S 56 degrees 38' W and altitudes from Lima, Peru at 20 m.a.s.l. to Chacaltaya, Bolivia at 5400 m.a.s.l. The detectors of the network are built on the basis of commercial water tanks, so they have several geometries (cylindrical in general) and different methods of water purification. The LAGO network of detectors also spans a wide range of geomagnetic rigidity cut offs and atmospheric absorption depths. All these features, along with their manufacturing differences, generates different structures in the atmospheric radiation spectra measured by our detectors. One of the main scientific goals of LAGO is to measure the temporal evolution of the flow of secondary particles at ground level. The atmospheric flux produced by the interaction of cosmic rays with the atmosphere at different sites is measured to study the solar modulation of galactic cosmic rays. In the present work we describe the features of a web monitor system developed to integrate, monitor and share the data of the LAGO detectors and discuss the criteria used to estimate the signals left by the secondary particles at the detector, which are based on a novel semi-analytical method that combines simulations of the total cosmic ray spectrum and the detector's response. We also show the detector calibration method applied on three detectors of the network, including the one operated in the Machu Picchu Base (62 degrees 05' S 58 degrees 28' W) during the last Peruvian scientific campaign in Antarctica (January 2018). Finally, we review observation of a Forbush decrease measured in the detectors using this calibration technique.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Cherenkov Water Detectors in Particle Physics and Cosmic Rays
    A. A. Petrukhin
    I. I. Yashin
    Physics of Atomic Nuclei, 2017, 80 : 1557 - 1566
  • [42] Tagging spallation backgrounds with showers in water Cherenkov detectors
    Li, Shirley Weishi
    Beacom, John F.
    PHYSICAL REVIEW D, 2015, 92 (10):
  • [43] Cherenkov Water Detectors in Particle Physics and Cosmic Rays
    Petrukhin, A. A.
    Yashin, I. I.
    PHYSICS OF ATOMIC NUCLEI, 2017, 80 (10) : 1557 - 1566
  • [44] Study on the optimization of the water Cherenkov detector array of the LHAASO project for surveying VHE gamma ray sources
    李会财
    陈明君
    贾焕玉
    高博
    吴含荣
    姚志国
    游晓浩
    周斌
    祝凤荣
    Chinese Physics C, 2014, (01) : 55 - 61
  • [45] Study on the optimization of the water Cherenkov detector array of the LHAASO project for surveying VHE gamma ray sources
    李会财
    陈明君
    贾焕玉
    高博
    吴含荣
    姚志国
    游晓浩
    周斌
    祝凤荣
    Chinese Physics C, 2014, 38 (01) : 55 - 61
  • [46] Study on the optimization of the water Cherenkov detector array of the LHAASO project for surveying VHE gamma ray sources
    Li Hui-Cai
    Chen Ming-Jun
    Jia Huan-Yu
    Gao Bo
    Wu Han-Rong
    Yao Zhi-Guo
    Yuo Xiao-Hao
    Zhou Bin
    Zhu Feng-Rong
    CHINESE PHYSICS C, 2014, 38 (01)
  • [47] The SST-1M project for the Cherenkov Telescope Array
    Heller, M.
    Alispach, C.
    Al Samarai, I.
    Balbo, M.
    Barbano, A.
    Beshley, V.
    Biland, A.
    Blazek, J.
    Blocki, J.
    Borkowski, J.
    Bulik, T.
    Cadoux, F.
    Chytka, L.
    Coco, V.
    De Angelis, N.
    della Volpe, D.
    Favre, Y.
    Gieras, T.
    Grudzinska, M.
    Hamal, P.
    Hrabovsky, M.
    Jurysek, J.
    Kasperek, J.
    Koncewicz, K.
    Kotarba, A.
    Lyard, E.
    Mach, E.
    Mandat, D.
    Michal, S.
    Michalowski, J.
    Moderski, R.
    Montaruli, T.
    Nagai, A.
    Neise, D.
    Niemiec, J.
    Ekoume, T. R. S. Njoh
    Ostrowski, M.
    Palatka, M.
    Pasko, P.
    Pech, M.
    Pilszyk, B.
    Przybilski, H.
    Rajda, P.
    Renier, Y.
    Rozwadowski, P.
    Schovanek, P.
    Seweryn, K.
    Sliusar, V.
    Smakulska, D.
    Sobczynska, D.
    36TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2019, 2021,
  • [48] Gadolinium in water Cherenkov detectors improves detection of supernova νe
    Laha, Ranjan
    Beacom, John F.
    PHYSICAL REVIEW D, 2014, 89 (06):
  • [49] NUCLEAR RESPONSE OF WATER CHERENKOV DETECTORS TO SUPERNOVA AND SOLAR NEUTRINOS
    HAXTON, WC
    PHYSICAL REVIEW D, 1987, 36 (08): : 2283 - 2292
  • [50] Calibration and monitoring of water Cherenkov detectors with stopping and crossing muons
    Alarcón, M
    Alcaraz, F
    Barrera, J
    Cantoral, E
    D'Olivo, JC
    Fernández, A
    Medina, M
    Nellen, L
    Pacheco, C
    Román, S
    Salazar, H
    Valdes-Galicia, JF
    Vargas, M
    Villaseñor, L
    Zepeda, A
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1999, 420 (1-2): : 39 - 47