Visual Analytics Interface for Time Series Data based on Trajectory Manipulation

被引:2
|
作者
Takami, Rei [1 ]
Takama, Yasufumi [1 ]
机构
[1] Tokyo Metropolitan Univ, Grad Sch Syst Design, Tokyo, Japan
关键词
animation; data visualization; human computer interaction; interactive systems; time series analysis;
D O I
10.1109/WI.2018.00-70
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, time series data have been collected in many fields, and a visual analytics (VA) interface is expected to be useful for utilizing such data. When developing such interfaces for time series data, several problems arising from the property of time series data need to be resolved. For example, the temporal trend of data is usually visualized with animation. However, with this approach, a collision would occur between the movement of the time series data itself and that caused by interaction with users. As a result, visual clutter often occurs on a display. To solve these problems, this paper focuses on trajectories, which can handle temporal and spatial changes uniformly, and proposes a VA interface that enables direct manipulation of trajectories. The usefulness of the proposed interface is demonstrated through experiments.
引用
收藏
页码:342 / 347
页数:6
相关论文
共 50 条
  • [41] Multivariate time series dataset for space weather data analytics
    Rafal A. Angryk
    Petrus C. Martens
    Berkay Aydin
    Dustin Kempton
    Sushant S. Mahajan
    Sunitha Basodi
    Azim Ahmadzadeh
    Xumin Cai
    Soukaina Filali Boubrahimi
    Shah Muhammad Hamdi
    Michael A. Schuh
    Manolis K. Georgoulis
    [J]. Scientific Data, 7
  • [42] Multivariate time series dataset for space weather data analytics
    Angryk, Rafal A.
    Martens, Petrus C.
    Aydin, Berkay
    Kempton, Dustin
    Mahajan, Sushant S.
    Basodi, Sunitha
    Ahmadzadeh, Azim
    Cai, Xumin
    Filali Boubrahimi, Soukaina
    Hamdi, Shah Muhammad
    Schuh, Michael A.
    Georgoulis, Manolis K.
    [J]. SCIENTIFIC DATA, 2020, 7 (01)
  • [43] Solving Some Problems of Predictive Analytics for Time Series Data
    Botygin, Igor
    Sherstneva, Anna
    Sherstnev, Vladislav
    [J]. SOFTWARE ENGINEERING PERSPECTIVES IN SYSTEMS, VOL. 1, 2022, 501 : 382 - 391
  • [44] Towards Integrated Data Analytics: Time Series Forecasting in DBMS
    Fischer, Ulrike
    Dannecker, Lars
    Siksnys, Laurynas
    Rosenthal, Frank
    Boehm, Matthias
    Lehner, Wolfgang
    [J]. Datenbank-Spektrum, 2013, 13 (01) : 45 - 53
  • [45] A Survey on Big Data for Trajectory Analytics
    de Almeida, Damao Ribeiro
    Baptista, Claudio de Souza
    de Andrade, Fabio Gomes
    Soares, Amilcar
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (02)
  • [46] Identification of Urban Functional Regions in Chengdu Based on Taxi Trajectory Time Series Data
    Liu, Xudong
    Tian, Yongzhong
    Zhang, Xueqian
    Wan, Zuyi
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (03)
  • [47] Time Series Data Mining: A Case Study With Big Data Analytics Approach
    Wang, Fang
    Li, Menggang
    Mei, Yiduo
    Li, Wenrui
    [J]. IEEE ACCESS, 2020, 8 : 14322 - 14328
  • [48] Visual mining of spatial time series data
    Andrienko, G
    Andrienko, N
    Gatalsky, P
    [J]. KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2004, PROCEEDINGS, 2004, 3202 : 524 - 527
  • [49] Design of an Ecological Visual Analytics Interface for Operators of Time-Constant Processes
    Zohrevandi, Elmira
    Brorsson, Emmanuel
    Darnell, Andreas
    Bang, Magnus
    Lundberg, Jonas
    Ynnerman, Anders
    [J]. 2023 IEEE VISUALIZATION AND VISUAL ANALYTICS, VIS, 2023, : 131 - 135
  • [50] Towards a conceptual framework for visual analytics of time and time-oriented data
    Aigner, Wolfgang
    Bertone, Alessio
    Miksch, Silvia
    Tominski, Christian
    Schumann, Heidrun
    [J]. PROCEEDINGS OF THE 2007 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2007, : 700 - +