Local-Global Merge Tree Computation with Local Exchanges

被引:6
|
作者
Nigmetov, Arnur [1 ]
Morozov, Dmitriy [2 ]
机构
[1] Graz Univ Technol, Graz, Austria
[2] Lawrence Berkeley Natl Lab, Berkeley, CA USA
基金
奥地利科学基金会;
关键词
D O I
10.1145/3295500.3356188
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A merge tree is a topological summary of a real-valued function on a graph. Merge trees can be used to find stable features in the data, report the number of connected components above any threshold, or compute other topological descriptors. A local-global merge tree provides a way of distributing a merge tree among multiple processors so that queries can be performed with minimal communication. While this makes them efficient in massively parallel setting, the only known algorithm for computing a local-global merge tree involves global reduction. Motivated by applications in cosmological simulations, we consider a restricted version of the problem: we compute a local-global tree down to a threshold fixed by the user. We describe two algorithms for computing such a tree via only local exchanges between processors. We present a number of experiments that show the advantage of our method on different simulations.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] LOCAL-GLOBAL PRINCIPLE FOR TRANSVECTION GROUPS
    Bak, A.
    Basu, Rabeya
    Rao, Ravi A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (04) : 1191 - 1204
  • [42] The impact of consumer's local-global identity on the evaluation of global versus local product
    Lu, Xiao-Jing
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2018, 21 (06): : 1241 - 1246
  • [43] Duality and local-global principle for local Henselian rings of dimension 2
    Izquierdo, Diego
    Riou, Joel
    ALGEBRAIC GEOMETRY, 2019, 6 (02): : 148 - 176
  • [44] Local-global principle for the body of functions on higher local bodies I
    Izquierdo, Diego
    JOURNAL OF NUMBER THEORY, 2015, 157 : 250 - 270
  • [45] LOCAL-GLOBAL PRINCIPLE FOR THE FINITENESS AND ARTINIANNESS OF GENERALISED LOCAL COHOMOLOGY MODULES
    Fathi, Ali
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 87 (03) : 480 - 492
  • [46] Local-Global Mixed Patch Matching Framework
    Yu, Mali
    Zhang, Hai
    Zhou, Caixue
    2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2017,
  • [47] Local-Global Decompositions for Conditional Microstructure Generation
    Robertson, Andreas E.
    Kelly, Conlain
    Buzzy, Michael
    Kalidindi, Surya R.
    ACTA MATERIALIA, 2023, 253
  • [48] Nice local-global fields .3.
    Ershov, YL
    SIBERIAN MATHEMATICAL JOURNAL, 1997, 38 (03) : 449 - 454
  • [49] Local-Global Landmark Confidences for Face Recognition
    Kim, KangGeon
    Chang, Feng-Ju
    Choi, Jongmoo
    Morency, Louis-Philippe
    Nevatia, Ramakant
    Medioni, Gerard
    2017 12TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2017), 2017, : 666 - 672
  • [50] Local-global convergence, an analytic and structural approach
    Nesetril, Jaroslav
    de Mendez, Patrice Ossona
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2019, 60 (01): : 97 - 129