total and soluble aerosol Fe;
size-segregated particles;
acidic components;
relative humidity;
deep learning model;
worldwide ocean air;
INTERMEDIATE-COMPLEXITY;
COMBUSTION AEROSOLS;
PARTICLE-SIZE;
DUST;
DEPOSITION;
DRIVEN;
DISSOLUTION;
SPECIATION;
MECHANISM;
NITRATE;
D O I:
10.1021/acs.est.2c05266
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Aerosol iron (Fe) solubility is a key factor for the assessment of atmospheric nutrients input to the ocean but poorly specified in models because the mechanism of determining the solubility is unclear. We develop a deep learning model to project the solubility based on the data that we observed in a coastal city of China. The model has five variables: the size range of particles, relative humidity, and the ratios of sulfate, nitrate and oxalate to total Fe (TFe) contents in aerosol particles. Results show excellent statistical agreements with the solubility in the literature over most worldwide seas and margin areas with the Pearson correlation coefficients (r) as large as 0.73-0.97. The exception is the Atlantic Ocean, where good agreement is obtained with the model trained using local data (r: 0.34-0.66). The model further uncovers that the ratio of oxalate/TFe is the most important variable influencing the solubility. These results indicate the feasibility of treating the solubility as a function of the six factors in deep learning models with careful training and validation. Our model and projected solubility provide innovative options for better quantification of air-to-sea input of aerosol soluble Fe in observational and model studies in the global marine atmosphere.
机构:
Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA
NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USAUniv Maryland Baltimore Cty, Baltimore, MD 21250 USA
Bian, Huisheng
Froyd, Karl
论文数: 0引用数: 0
h-index: 0
机构:
NOAA, Earth Syst Res Lab, Chem Sci Div, Boulder, CO USA
Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USAUniv Maryland Baltimore Cty, Baltimore, MD 21250 USA
Froyd, Karl
Murphy, Daniel M.
论文数: 0引用数: 0
h-index: 0
机构:
NOAA, Earth Syst Res Lab, Chem Sci Div, Boulder, CO USAUniv Maryland Baltimore Cty, Baltimore, MD 21250 USA
Murphy, Daniel M.
Dibb, Jack
论文数: 0引用数: 0
h-index: 0
机构:
Univ New Hampshire, Durham, NH 03824 USAUniv Maryland Baltimore Cty, Baltimore, MD 21250 USA
Dibb, Jack
Darmenov, Anton
论文数: 0引用数: 0
h-index: 0
机构:
NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USAUniv Maryland Baltimore Cty, Baltimore, MD 21250 USA
Darmenov, Anton
Chin, Mian
论文数: 0引用数: 0
h-index: 0
机构:
NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USAUniv Maryland Baltimore Cty, Baltimore, MD 21250 USA
Chin, Mian
Colarco, Peter R.
论文数: 0引用数: 0
h-index: 0
机构:
NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USAUniv Maryland Baltimore Cty, Baltimore, MD 21250 USA
Colarco, Peter R.
da Silva, Arlindo
论文数: 0引用数: 0
h-index: 0
机构:
NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USAUniv Maryland Baltimore Cty, Baltimore, MD 21250 USA
da Silva, Arlindo
Kucsera, Tom L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Space Res Assoc, Columbia, MD USAUniv Maryland Baltimore Cty, Baltimore, MD 21250 USA
Kucsera, Tom L.
Schill, Gregory
论文数: 0引用数: 0
h-index: 0
机构:
NOAA, Earth Syst Res Lab, Chem Sci Div, Boulder, CO USA
Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USAUniv Maryland Baltimore Cty, Baltimore, MD 21250 USA
Schill, Gregory
Yu, Hongbin
论文数: 0引用数: 0
h-index: 0
机构:
NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USAUniv Maryland Baltimore Cty, Baltimore, MD 21250 USA
Yu, Hongbin
Bui, Paul
论文数: 0引用数: 0
h-index: 0
机构:
NASA, Ames Res Ctr, Moffett Field, CA 94035 USAUniv Maryland Baltimore Cty, Baltimore, MD 21250 USA