A van der Waals Density Functional Study of MoO3 and Its Oxygen Vacancies

被引:104
|
作者
Inzani, Katherine [1 ]
Grande, Tor [1 ]
Vullum-Bruer, Fride [1 ]
Selbach, Sverre M. [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Mat Sci & Engn, N-7491 Trondheim, Norway
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2016年 / 120卷 / 16期
关键词
TOTAL-ENERGY CALCULATIONS; MOLYBDENUM TRIOXIDE; BAND-STRUCTURE; POINT-DEFECTS; OXIDE; ALPHA-MOO3; TRANSITION; REDUCTION; STABILITY; SURFACE;
D O I
10.1021/acs.jpcc.6b00585
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electronic structure of layered molybdenum trioxide MoO3 is highly sensitive to changes in oxygen stoichiometry as Mo6+ has an empty 4d shell. Applications of MoO3 are responsive to small changes in vacancy concentration, with some functions relying on a narrow window of oxygen nonstoichiometry. Difficulties in analyzing the energetics of oxygen vacancies by computational methods stem from the inability to accurately model the layered structure of MoO3. One unit cell parameter is governed by long-range forces across the structural gaps, and these dispersed interactions are not well described by conventional density functional theory (DFT) methods. With the exchange functional vdW-DF2, we accurately model the structure, in good agreement with experimental data. This basis allows exploration of the effect of oxygen nonstoichiometry on the electronic structure and properties of the oxygen-deficient material. The layered structure efficiently screens the structural perturbations caused by oxygen vacancies. The enthalpies of formation are calculated for oxygen vacancies at the three symmetry inequivalent oxygen sites. The oxygen deficiency in MoO3 gives rise to Mo 4d gap states with energy levels dependent on the type of oxygen vacancy.
引用
收藏
页码:8959 / 8968
页数:10
相关论文
共 50 条
  • [21] Tunable Cherenkov radiation based on a van der Waals semiconductor α-MoO3 and graphene hybrid
    Xue, Shuwen
    Zeng, Yali
    Bao, Qiaoliang
    Zhu, Shan
    Chen, Huanyang
    OPTICS LETTERS, 2022, 47 (10) : 2458 - 2461
  • [22] Van der Waals Heterostructures with Tunable Tunneling Behavior Enabled by MoO3 Surface Functionalization
    Wang, Yanan
    Xiang, Du
    Zheng, Yue
    Liu, Tao
    Ye, Xin
    Gao, Jing
    Yang, Hang
    Han, Cheng
    Chen, Wei
    ADVANCED OPTICAL MATERIALS, 2020, 8 (07):
  • [23] Low-Loss Anisotropic Image Polaritons in van der Waals Crystal α-MoO3
    Menabde, Sergey G.
    Jahng, Junghoon
    Boroviks, Sergejs
    Ahn, Jongtae
    Heiden, Jacob T.
    Hwang, Do Kyung
    Lee, Eun Sung
    Mortensen, N. Asger
    Jang, Min Seok
    ADVANCED OPTICAL MATERIALS, 2022, 10 (21)
  • [24] Adsorption of water on graphene: A van der Waals density functional study
    Hamada, Ikutaro
    PHYSICAL REVIEW B, 2012, 86 (19)
  • [25] Interaction of boron with graphite: A van der Waals density functional study
    Liu, Juan
    Wang, Chen
    Liang, Tongxiang
    Lai, Wensheng
    APPLIED SURFACE SCIENCE, 2016, 379 : 402 - 410
  • [26] van der Waals Epitaxial Formation of Atomic Layered α-MoO3 on MoS2 by Oxidation
    Yoon, Aram
    Kim, Jung Hwa
    Yoon, Jongchan
    Lee, Yeongdong
    Lee, Zonghoon
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (19) : 22029 - 22036
  • [27] Van der Waals density functional: An appropriate exchange functional
    Cooper, Valentino R.
    PHYSICAL REVIEW B, 2010, 81 (16):
  • [28] Van der Waals density functional theory with applications
    Langreth, DC
    Dion, M
    Rydberg, H
    Schröder, E
    Hyldgaard, P
    Lundqvist, BI
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2005, 101 (05) : 599 - 610
  • [29] Chemical accuracy for the van der Waals density functional
    Klimes, Jiri
    Bowler, David R.
    Michaelides, Angelos
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (02)
  • [30] Van der waals interactions in density functional theory
    Andersson, Y
    Hult, E
    Rydberg, H
    Apell, P
    Lundqvist, BI
    Langreth, DC
    ELECTRONIC DENSITY FUNCTIONAL THEORY: RECENT PROGRESS AND NEW DIRECTIONS, 1998, : 243 - 260