Data-driven estimation of building energy consumption with multi-source heterogeneous data

被引:100
|
作者
Pan, Yue [1 ]
Zhang, Limao [1 ]
机构
[1] Nanyang Technol Univ, Sch Civil & Environm Engn, 50 Nanyang Ave, Singapore 639798, Singapore
关键词
Building energy estimation; Data mining; Categorical boosting (CatBoost) model; Feature importance; ARTIFICIAL NEURAL-NETWORK; ELECTRICITY CONSUMPTION; FAULT-DETECTION; PREDICTION; MACHINE; CHINA; PERFORMANCE; EFFICIENCY; EMISSIONS; CATBOOST;
D O I
10.1016/j.apenergy.2020.114965
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
For better energy evaluation and management, a categorical boosting (CatBoost)-based predictive method is presented to accurately estimate building energy consumption by learning large volumes of multi-source heterogeneous data collected from buildings. To be specific, the newly-developed CatBoost model belonging to the ensemble learning has superiority in handling categorical variables and producing reliable results. As a case study, our proposed method is validated in a multi-dimensional dataset about Seattle's building energy performance provided by the city's government, aiming to estimate the weather normalized site energy use intensity of buildings and characterize its non-linear relationship with other 12 possible influential features. Results from the 5-fold cross-validation demonstrate that the model exhibits a strong ability in predicting the exact value of energy intensity precisely, which can even outperform popular machine learning algorithms including random forest and gradient boosting decision tree under R-2 of 0.897. Based on a defined threshold, these predicted values can be classified as the normal or abnormal energy consumption reaching an accuracy of 99.32% for outlier detection, which is helpful in alarming potential risks at an early stage and developing strategies to enhance the energy efficiency. Moreover, results from the established model can be interpreted objectively, suggesting that features concerning the physical and energy characteristics contribute more to energy estimation than environmental features. Since such results understand the building energy consumption and efficiency in a data-driven manner, they can eventually serve as guidance for building owners and designers in designing and renovating buildings to achieve better energy-conserving performance.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A framework for a multi-source, data-driven building energy management toolkit
    Markus, Andre A.
    Hobson, Brodie W.
    Gunay, H. Burak
    Bucking, Scott
    [J]. ENERGY AND BUILDINGS, 2021, 250
  • [2] Data-Driven Modeling for Energy Consumption Estimation
    Yang, Chunsheng
    Cheng, Qiangqiang
    Lai, Pinhua
    Liu, Jie
    Guo, Hongyu
    [J]. EXERGY FOR A BETTER ENVIRONMENT AND IMPROVED SUSTAINABILITY 2: APPLICATIONS, 2018, : 1057 - 1068
  • [3] Data-Driven Forecasting Algorithms for Building Energy Consumption
    Noh, Hae Young
    Rajagopal, Ram
    [J]. SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2013, 2013, 8692
  • [4] Data-driven multi-source remote sensing data fusion: progress and challenges
    Zhang, Liangpei
    He, Jiang
    Yang, Qianqian
    Xiao, Yi
    Yuan, Qiangqiang
    [J]. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (07): : 1317 - 1337
  • [5] Multi-Source Data-Driven Route Prediction for Instant Delivery
    Zhou, Zhiyuan
    Zhou, Xiaolei
    Lu, Yao
    Yan, Hua
    Guo, Baoshen
    Wang, Shuai
    [J]. 2021 17TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2021), 2021, : 374 - 381
  • [6] Multi-Source Knowledge Reasoning for Data-Driven IoT Security
    Zhang, Shuqin
    Bai, Guangyao
    Li, Hong
    Liu, Peipei
    Zhang, Minzhi
    Li, Shujun
    [J]. SENSORS, 2021, 21 (22)
  • [7] Multi-source Heterogeneous Data Fusion
    Zhang, Lili
    Xie, Yuxiang
    Luan Xidao
    Zhang, Xin
    [J]. 2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA (ICAIBD), 2018, : 47 - 51
  • [8] Multi-source data-driven estimation of urban net primary productivity: A case study of Wuhan
    Chen, Jinlong
    Shao, Zhenfeng
    Huang, Xiao
    Hu, Bin
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 127
  • [9] A review of data-driven building energy consumption prediction studies
    Amasyali, Kadir
    El-Gohary, Nora M.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 81 : 1192 - 1205
  • [10] Data-Driven Tools for Building Energy Consumption Prediction: A Review
    Olu-Ajayi, Razak
    Alaka, Hafiz
    Owolabi, Hakeem
    Akanbi, Lukman
    Ganiyu, Sikiru
    [J]. ENERGIES, 2023, 16 (06)