Data-Driven Tools for Building Energy Consumption Prediction: A Review

被引:17
|
作者
Olu-Ajayi, Razak [1 ]
Alaka, Hafiz [1 ]
Owolabi, Hakeem [2 ]
Akanbi, Lukman [2 ]
Ganiyu, Sikiru [3 ]
机构
[1] Univ Hertfordshire, Big Data Technol & Innovat Lab, Hatfield AL10 9AB, England
[2] Univ West England, Fac Business & Law FBL, Bristol BS16 1QY, England
[3] Teesside Univ, Big DEAL Lab, Middlesbrough TS1 3BX, England
关键词
building energy consumption prediction; data driven tools; energy conservation; energy efficiency; energy prediction; machine learning; ELECTRICITY CONSUMPTION; LOAD PREDICTION; FORECASTING-MODEL; NEURAL-NETWORK; EFFICIENT; DEMAND; TIME; PERFORMANCE; ANN; SINGLE;
D O I
10.3390/en16062574
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The development of data-driven building energy consumption prediction models has gained more attention in research due to its relevance for energy planning and conservation. However, many studies have conducted the inappropriate application of data-driven tools for energy consumption prediction in the wrong conditions. For example, employing a data-driven tool to develop a model using a small sample size, despite the recognition of the tool for producing good results in large data conditions. This study delivers a review of 63 studies with a precise focus on evaluating the performance of data-driven tools based on certain conditions; i.e., data properties, the type of energy considered, and the type of building explored. This review identifies gaps in research and proposes future directions in the field of data-driven building energy consumption prediction. Based on the studies reviewed, the outcome of the evaluation of the data-driven tools performance shows that Support Vector Machine (SVM) produced better performance than other data-driven tools in the majority of the review studies. SVM, Artificial Neural Network (ANN), and Random Forest (RF) produced better performances in more studies than statistical tools such as Linear Regression (LR) and Autoregressive Integrated Moving Average (ARIMA). However, it is deduced that none of the reviewed tools are predominantly better than the other tools in all conditions. It is clear that data-driven tools have their strengths and weaknesses, and tend to elicit distinctive results in different conditions. Hence, this study provides a proposed guideline for the selection tool based on strengths and weaknesses in different conditions.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] A review of data-driven building energy consumption prediction studies
    Amasyali, Kadir
    El-Gohary, Nora M.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 81 : 1192 - 1205
  • [2] A review of data-driven approaches for prediction and classification of building energy consumption
    Wei, Yixuan
    Zhang, Xingxing
    Shi, Yong
    Xia, Liang
    Pan, Song
    Wu, Jinshun
    Han, Mengjie
    Zhao, Xiaoyun
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 : 1027 - 1047
  • [3] A Review of Data-Driven Building Energy Prediction
    Liu, Huiheng
    Liang, Jinrui
    Liu, Yanchen
    Wu, Huijun
    [J]. BUILDINGS, 2023, 13 (02)
  • [4] Physical energy and data-driven models in building energy prediction: A review
    Chen, Yongbao
    Guo, Mingyue
    Chen, Zhisen
    Chen, Zhe
    Ji, Ying
    [J]. ENERGY REPORTS, 2022, 8 : 2656 - 2671
  • [5] Modeling and forecasting building energy consumption: A review of data-driven techniques
    Bourdeau, Mathieu
    Zhai, Xiao Qiang
    Nefzaoui, Elyes
    Guo, Xiaofeng
    Chatellier, Patrice
    [J]. SUSTAINABLE CITIES AND SOCIETY, 2019, 48
  • [6] A state of the art review on the prediction of building energy consumption using data-driven technique and evolutionary algorithms
    Li, Kangji
    Xue, Wenping
    Tan, Gang
    Denzer, Anthony S.
    [J]. BUILDING SERVICES ENGINEERING RESEARCH & TECHNOLOGY, 2020, 41 (01): : 108 - 127
  • [7] Data-Driven Forecasting Algorithms for Building Energy Consumption
    Noh, Hae Young
    Rajagopal, Ram
    [J]. SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2013, 2013, 8692
  • [8] Data-Driven Residential Building Energy Consumption Prediction for Supporting Multiscale Sustainability Assessment
    Wang, Lufan
    El-Gohary, Nora M.
    [J]. COMPUTING IN CIVIL ENGINEERING 2017: INFORMATION MODELLING AND DATA ANALYTICS, 2017, : 324 - 332
  • [9] Data-Driven Building Energy Consumption Prediction Model Based on VMD-SA-DBN
    Qin, Yongrui
    Zhao, Meng
    Lin, Qingcheng
    Li, Xuefeng
    Ji, Jing
    [J]. MATHEMATICS, 2022, 10 (17)
  • [10] A Review of the Data-Driven Prediction Method of Vehicle Fuel Consumption
    Zhao, Dengfeng
    Li, Haiyang
    Hou, Junjian
    Gong, Pengliang
    Zhong, Yudong
    He, Wenbin
    Fu, Zhijun
    [J]. ENERGIES, 2023, 16 (14)