Fidelity for the quantum evolution of a Bose-Einstein condensate

被引:64
|
作者
Liu, J [1 ]
Wang, WG
Zhang, CW
Niu, Q
Li, BW
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[2] Natl Univ Singapore, Beijing Hong Kong Singapore Joint Ctr Nonlinear &, Singapore 117542, Singapore
[3] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[4] Southeast Univ, Dept Phys, Nanjing 210096, Peoples R China
[5] Univ Texas, Dept Phys, Austin, TX 78712 USA
[6] Univ Texas, Ctr Nonlinear Dynam, Austin, TX 78712 USA
[7] Natl Univ Singapore, Grad Sch Integrat Sci & Engn, Singapore 117597, Singapore
来源
PHYSICAL REVIEW A | 2005年 / 72卷 / 06期
关键词
D O I
10.1103/PhysRevA.72.063623
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate fidelity for the quantum evolution of a Bose-Einstein condensate (BEC) and reveal its general property with a simple two-component BEC model. We find that, when the initial state is a coherent state, the fidelity decays with time in the ways of exponential, Gaussian, and power law, depending on the initial location, the perturbation strength, as well as the underlying mean-field classical dynamics. In this case we find a clear correspondence between the fast quantum fidelity decay and the dynamical instability of the mean-field system. With the initial state prepared as a maximally entangled state, we find that the behavior of fidelity has no classical correspondence and observe an interesting behavior of the fidelity: periodic revival, where the period is inversely proportional to the number of bosons and the perturbation strength. An experimental observation of the fidelity decay is suggested.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Quantum phase evolution of a Bose-Einstein condensate
    Simsarian, J.E.
    Denschlag, J.
    Clark, Charles
    Deng, L.
    Edwards, Mark
    Hagley, E.W.
    Helmerson, K.
    Rolston, S.L.
    Phillips, W.D.
    [J]. Conference on Quantum Electronics and Laser Science (QELS) - Technical Digest Series, 2000, : 295 - 296
  • [2] Quantum optics of a bose-einstein condensate
    Lewenstein, M.
    You, L.
    Cooper, J.
    [J]. Acta Physica Polonica A, 1994, 86 (1-2):
  • [3] QUANTUM MANIPULATION OF A BOSE-EINSTEIN CONDENSATE
    ZENG, HP
    LIN, FC
    ZHANG, WP
    [J]. PHYSICS LETTERS A, 1995, 201 (5-6) : 397 - 401
  • [4] QUANTUM OPTICS OF A BOSE-EINSTEIN CONDENSATE
    LEWENSTEIN, M
    YOU, L
    COOPER, J
    [J]. ACTA PHYSICA POLONICA A, 1994, 86 (1-2) : 173 - 190
  • [5] Simulating cosmological evolution by quantum quench of an atomic Bose-Einstein condensate
    Wang, Ke
    Fu, Han
    Levin, K.
    [J]. PHYSICAL REVIEW A, 2024, 109 (01)
  • [6] Cavity quantum electrodynamics of a Bose-Einstein condensate
    Joshi, A
    [J]. PHYSICS LETTERS A, 2001, 290 (1-2) : 23 - 27
  • [7] Quantum dynamics of the phase of a Bose-Einstein condensate
    Villain, P
    Lewenstein, M
    Dum, R
    Castin, Y
    You, L
    Imamoglu, A
    Kennedy, TAB
    [J]. JOURNAL OF MODERN OPTICS, 1997, 44 (10) : 1775 - 1799
  • [8] Quantum dynamics of an atomic Bose-Einstein condensate
    Milburn, GJ
    Corney, J
    Harris, D
    Wright, E
    Walls, DF
    [J]. ATOM OPTICS, 1997, 2995 : 232 - 239
  • [9] Nonlinear quantum gates for a Bose-Einstein condensate
    Xu, Shu
    Schmiedmayer, Joerg
    Sanders, Barry C.
    [J]. PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [10] Quantum phase diffusion of a Bose-Einstein condensate
    Lewenstein, M
    You, L
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (17) : 3489 - 3493