Simulating cosmological evolution by quantum quench of an atomic Bose-Einstein condensate

被引:0
|
作者
Wang, Ke [1 ,2 ,3 ]
Fu, Han [4 ]
Levin, K. [1 ]
机构
[1] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[2] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[3] Univ Chicago, Kadanoff Ctr Theoret Phys, Chicago, IL 60637 USA
[4] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA
关键词
PARTICLE-PRODUCTION; DYNAMICS;
D O I
10.1103/PhysRevA.109.013316
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In cosmological evolution, it is the homogeneous scalar field (inflaton) that drives the universe to expand isotropically and to generate standard model particles. However, to simulate cosmology, atomic gas research has focused on the dynamics of Bose-Einstein condensates (BEC) with continuously applied forces. In this paper we argue that a complementary approach needs also to be pursued; we thus consider the analog BEC experiments in a nondriven and naturally closed atomic system. We implement this using a BEC in an optical lattice which, after a quench, freely transitions from an unstable to a stable state. This dynamical evolution displays the counterpart "preheating," "reheating," and "thermalization" phases of cosmology. Importantly, our studies of these analog processes yield tractable analytic models. Additionally, of great utility to the cold atom community, such understanding elucidates the dynamics of nonadiabatic condensate preparation. Indeed, the dynamical processes discussed here are generic and in future cold atom reequilibration experiments it will be important to observe both the preheating stage, corresponding to a fragmented condensate, and the reheating stage, corresponding to a particle cloud.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Quantum dynamics of an atomic Bose-Einstein condensate
    Milburn, GJ
    Corney, J
    Harris, D
    Wright, E
    Walls, DF
    [J]. ATOM OPTICS, 1997, 2995 : 232 - 239
  • [2] Quantum phase evolution of a Bose-Einstein condensate
    Simsarian, J.E.
    Denschlag, J.
    Clark, Charles
    Deng, L.
    Edwards, Mark
    Hagley, E.W.
    Helmerson, K.
    Rolston, S.L.
    Phillips, W.D.
    [J]. Conference on Quantum Electronics and Laser Science (QELS) - Technical Digest Series, 2000, : 295 - 296
  • [3] Fidelity for the quantum evolution of a Bose-Einstein condensate
    Liu, J
    Wang, WG
    Zhang, CW
    Niu, Q
    Li, BW
    [J]. PHYSICAL REVIEW A, 2005, 72 (06):
  • [4] Evolution of cosmological perturbations in Bose-Einstein condensate dark matter
    Harko, T.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 413 (04) : 3095 - 3104
  • [5] QUANTUM TELEPORTATION FROM LIGHT TO ATOMIC BOSE-EINSTEIN CONDENSATE
    Guo, Yu
    Qu, Rong-Sheng
    [J]. MODERN PHYSICS LETTERS B, 2010, 24 (10): : 937 - 944
  • [6] Cosmological evolution of finite temperature Bose-Einstein condensate dark matter
    Harko, Tiberiu
    Mocanu, Gabriela
    [J]. PHYSICAL REVIEW D, 2012, 85 (08):
  • [7] Quantum optics of a bose-einstein condensate
    Lewenstein, M.
    You, L.
    Cooper, J.
    [J]. Acta Physica Polonica A, 1994, 86 (1-2):
  • [8] QUANTUM MANIPULATION OF A BOSE-EINSTEIN CONDENSATE
    ZENG, HP
    LIN, FC
    ZHANG, WP
    [J]. PHYSICS LETTERS A, 1995, 201 (5-6) : 397 - 401
  • [9] QUANTUM OPTICS OF A BOSE-EINSTEIN CONDENSATE
    LEWENSTEIN, M
    YOU, L
    COOPER, J
    [J]. ACTA PHYSICA POLONICA A, 1994, 86 (1-2) : 173 - 190
  • [10] Temporal evolution of cosmological density perturbations of the Bose-Einstein condensate dark matter
    Mondal, Subhra
    Choudhuri, Amitava
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (02):