The Pivotal Role of Reactive Oxygen Species Generation in the Hypoxia-Induced Stimulation of Adipose-Derived Stem Cells

被引:71
|
作者
Kim, Ji Hye [1 ,2 ,3 ]
Park, So-Hyun [1 ,2 ]
Park, Sang Gyu [4 ]
Choi, Joon-Seok [5 ]
Xia, Ying [6 ]
Sung, Jong-Hyuk [1 ,2 ]
机构
[1] CHA Univ, Dept Appl Biosci, Seoul 135081, South Korea
[2] CHA Stem Cell Inst, Stem Cell Res Lab, Seoul, South Korea
[3] CHA Bio & Diostech Co Ltd, Seoul, South Korea
[4] CHA Univ, Dept Biomed Sci, Seoul 135081, South Korea
[5] Korea Univ, Coll Life Sci & Biotechnol, Seoul, South Korea
[6] Univ Texas Med Sch Houston, Vivian L Smith Dept Neurosurg, Houston, TX USA
关键词
OXIDATIVE STRESS; KINASE ACTIVATION; SUPEROXIDE GENERATION; SECRETORY FACTORS; NADPH OXIDASE; INJURY MODEL; BONE-MARROW; TISSUE; GROWTH; PROGENITOR;
D O I
10.1089/scd.2010.0469
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Adipose-derived stem cells (ASCs) offer a potential alternative for tissue repair and regeneration. We have recently shown that hypoxia stimulates ASCs and enhances the regenerative potential of ASCs, which is beneficial for ASC therapy. In the present study, we further investigated a key mediator and a signal pathway involved in the stimulation of ASC during hypoxia. Culturing ASC in a hypoxic incubator (2% oxygen tension) increased the proliferation and migration, and this was mediated by Akt and ERK pathways. To determine the generation of reactive oxygen species (ROS), 2',7'-dichlorofluorescin diacetate intensity was detected by fluorescence-activated cell sorting. Hypoxia significantly increased the dichlorofluorescin diacetate intensity, which was greatly reduced by N-acetyl-cysteine and diphenyleneiodonium treatment. Likewise, the hypoxia-induced proliferation and migration of ASCs were reversed by N-acetyl-cysteine and diphenyleneiodonium treatment, suggesting the involvement of ROS generation in ASC stimulation. Further, we examined the activation of receptor tyrosine kinases and observed that hypoxia stimulated the phosphorylation of platelet-derived growth factor receptor-beta. In summary, the ROS produced by ASCs in response to hypoxia was mostly likely due to NADPH oxidase activity. The increased cellular ROS was accompanied by the phosphorylation of platelet-derived growth factor receptor-beta as well as by the activation of ERK and Akt signal pathways. Our results suggest a pivotal role for ROS generation in the stimulation of ASCs by hypoxia.
引用
收藏
页码:1753 / 1761
页数:9
相关论文
共 50 条
  • [21] The Role of miRNAs in the Differentiation of Adipose-Derived Stem Cells
    Chen, Jing
    Deng, Shuwen
    Zhang, Shu
    Chen, Zhaozhao
    Wu, Songtao
    Cai, Xiaoxiao
    Yang, Xingmei
    Guo, Bin
    Peng, Qiang
    CURRENT STEM CELL RESEARCH & THERAPY, 2014, 9 (03) : 268 - 279
  • [22] Role of adipose-derived stem cells in wound healing
    Ul Hassan, Waqar
    Greiser, Udo
    Wang, Wenxin
    WOUND REPAIR AND REGENERATION, 2014, 22 (03) : 313 - 325
  • [23] Hypoxia induces glucose uptake and metabolism of adipose-derived stem cells
    Park, Hyoung Sook
    Kim, Ji Hye
    Sun, Bo Kyung
    Song, Sun U.
    Suh, Wonhee
    Sung, Jong-Hyuk
    MOLECULAR MEDICINE REPORTS, 2016, 14 (05) : 4706 - 4714
  • [24] HYPOXIA-INDUCED SECRETOME OF ADIPOSE-DERIVED MESENCHYMAL STEM CELLS PROTECTS AGAINST GASTRIC MUCOSA INJURY: ANALYSIS OF POTENTIAL PARACRINE EFFECTORS
    Xia, Xian Feng
    Chiu, Philip Wai Yan W.
    Lam, Ping Keun
    Chin, Don
    Ng, Enders K.
    Lau, James Y.
    GASTROENTEROLOGY, 2017, 152 (05) : S887 - S887
  • [25] Generation of Neurospheres from Human Adipose-Derived Stem Cells
    Yang, Erfang
    Liu, Na
    Tang, Yingxin
    Hu, Yang
    Zhang, Ping
    Pan, Chao
    Dong, Shasha
    Zhang, Youping
    Tang, Zhouping
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [26] PGC-1α prevents apoptosis in adipose-derived stem cells by reducing reactive oxygen species production in a diabetic microenvironment
    Jiang, Xiao-Yan
    Lu, De-Bin
    Jiang, You-Zhao
    Zhou, Li-Na
    Cheng, Li-Qing
    Chen, Bing
    DIABETES RESEARCH AND CLINICAL PRACTICE, 2013, 100 (03) : 368 - 375
  • [27] Hypoxia enhances buffalo adipose-derived mesenchymal stem cells proliferation, stemness, and reprogramming into induced pluripotent stem cells
    Deng, Yanfei
    Huang, Guiting
    Che, Feng
    Testroet, Eric David
    Li, Hui
    Li, Haiyang
    Nong, Tianying
    Yang, Xiaoling
    Cui, Jiayu
    Shi, Deshun
    Yang, Sufang
    JOURNAL OF CELLULAR PHYSIOLOGY, 2019, 234 (10) : 17254 - 17268
  • [28] Reactive oxygen-species in hypoxia-induced erythropoietin production.
    Pagel, H
    Fandrey, J
    Jelkmann, W
    PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1997, 433 (06): : O152 - O152
  • [29] Electrical stimulation promotes the angiogenic potential of adipose-derived stem cells
    Jip Beugels
    Daniel G. M. Molin
    Daan R. M. G. Ophelders
    Teun Rutten
    Lilian Kessels
    Nico Kloosterboer
    Andrzej A. Piatkowski de Grzymala
    Boris W. W. Kramer
    René R. W. J. van der Hulst
    Tim G. A. M. Wolfs
    Scientific Reports, 9
  • [30] Electrical stimulation promotes the angiogenic potential of adipose-derived stem cells
    Beugels, Jip
    Molin, Daniel G. M.
    Ophelders, Daan R. M. G.
    Rutten, Teun
    Kessels, Lilian
    Kloosterboer, Nico
    de Grzymala, Andrzej A. Piatkowski
    Kramer, Boris W. W.
    van der Hulst, Rene R. W. J.
    Wolfs, Tim G. A. M.
    SCIENTIFIC REPORTS, 2019, 9 (1)