On path-cycle decompositions of triangle-free graphs

被引:0
|
作者
Jimenez, Andrea [1 ]
Wakabayashi, Yoshiko [2 ]
机构
[1] Univ Valparaiso, Fac Ingn, CIMFAV, Valparaiso, Chile
[2] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
path decomposition; cycle decomposition; length constraint; odd distance; triangle-free; Conjecture of Gallai; GALLAIS CONJECTURE;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this work, we study conditions for the existence of length-constrained path-cycle decompositions, that is, partitions of the edge set of a graph into paths and cycles of a given minimum length. Our main contribution is the characterization of the class of all triangle-free graphs with odd distance at least 3 that admit a path-cycle decomposition with elements of length at least 4. As a consequence, it follows that Gallai's conjecture on path decomposition holds in a broad class of sparse graphs.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Path decompositions of triangle-free graphs
    Chu, Yanan
    Fan, Genghua
    Zhou, Chuixiang
    [J]. DISCRETE MATHEMATICS, 2022, 345 (07)
  • [2] Recognizing triangle-free graphs with induced path-cycle double covers is NP-complete
    Jacobson, MS
    Kezdy, AE
    Lehel, J
    [J]. NETWORKS, 1998, 31 (01) : 1 - 10
  • [3] Cycle-maximal triangle-free graphs
    Durocher, Stephane
    Gunderson, David S.
    Li, Pak Ching
    Skala, Matthew
    [J]. DISCRETE MATHEMATICS, 2015, 338 (02) : 274 - 290
  • [4] On the cycle isolation number of triangle-free graphs
    Zhang, Gang
    Wu, Baoyindureng
    [J]. DISCRETE MATHEMATICS, 2024, 347 (12)
  • [5] Median graphs and triangle-free graphs
    Imrich, W
    Klavzar, S
    Mulder, HM
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (01) : 111 - 118
  • [6] Triangle-free graphs with no six-vertex induced path
    Chudnovsky, Maria
    Seymour, Paul
    Spirkl, Sophie
    Zhong, Mingxian
    [J]. DISCRETE MATHEMATICS, 2018, 341 (08) : 2179 - 2196
  • [7] Triangle-free equimatchable graphs
    Buyukcolak, Yasemin
    Ozkan, Sibel
    Gozupek, Didem
    [J]. JOURNAL OF GRAPH THEORY, 2022, 99 (03) : 461 - 484
  • [8] On triangle-free random graphs
    Luczak, T
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2000, 16 (03) : 260 - 276
  • [9] On triangle-free projective graphs
    Hazan, S
    [J]. ALGEBRA UNIVERSALIS, 1996, 35 (02) : 185 - 196
  • [10] ON MAXIMAL TRIANGLE-FREE GRAPHS
    ERDOS, P
    HOLZMAN, R
    [J]. JOURNAL OF GRAPH THEORY, 1994, 18 (06) : 585 - 594