ROBUSTIFICATION OF CHAOS IN 2D MAPS

被引:4
|
作者
Elhadj, Zeraoulia [1 ]
Sprott, J. C. [2 ]
机构
[1] Univ Tebessa, Dept Math, Tebessa 12002, Algeria
[2] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
来源
ADVANCES IN COMPLEX SYSTEMS | 2011年 / 14卷 / 06期
关键词
Robustification of chaos; chaotification; planar discrete mapping; piecewise smooth feedback controller; homoclinic chaos; SNAP-BACK-REPELLER; FEEDBACK-CONTROL; DYNAMICAL-SYSTEMS; INVERSE PROBLEM; DISCRETE CHAOS; ANTICONTROL;
D O I
10.1142/S0219525911003402
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Robust chaos is defined as the absence of periodic windows and coexisting attractors in some neighborhood of the parameter space since the existence of such windows in the chaotic region implies fragility of the chaos. In this paper, we introduce a new terminology called robustification of chaos, which means creating robust chaos (in the sense of the above definition) in a dynamical system. As a first step, a new chaotification (robustification) method to generate robust chaos in planar maps is presented using simple piecewise smooth feedback to create a border collision bifurcation in the resulting system under some realizable conditions. The results are applied to an elementary example to illustrate the validity of the proposed method.
引用
收藏
页码:817 / 827
页数:11
相关论文
共 50 条
  • [21] Technique of Embedding Depth Maps into 2D Images
    Kazutake Uehira
    Hiroshi Unno
    Youichi Takashima
    [J]. Journal of Electronic Science and Technology, 2014, (01) : 95 - 100
  • [22] 3D Collision Detection with 2D Terrain Maps
    Sherstyuk, Andrei
    Kiyokawa, Kiyoshi
    Yuki, Yano
    [J]. 2013 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW), 2013, : 382 - 382
  • [23] Pupils' representations of rivers on 2D and 3D maps
    Apostolopoulou, Ekaterini
    Klonari, Aikaterini
    [J]. 2ND INTERNATIONAL GEOGRAPHY SYMPOSIUM-MEDITERRANEAN ENVIRONMENT 2010, 2011, 19 : 443 - 449
  • [24] The potential energy surface and chaos in 2D Hamiltonian systems
    Li, Jiangdan
    Zhang, Suying
    [J]. PHYSICS LETTERS A, 2011, 375 (06) : 974 - 977
  • [25] Image encryption algorithm with 2D coupled discrete chaos
    Li, Bo
    Liu, Jiandong
    Liu, Yujie
    Xu, Haoqiang
    Wang, Jin
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (23) : 35379 - 35400
  • [26] Signature of quantum chaos in operator entanglement in 2d CFTs
    Nie, Laimei
    Nozaki, Masahiro
    Ryu, Shinsei
    Tan, Mao Tian
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [27] Manifestations of quantum chaos in spectra of 2D photonic crystals
    Gumen, LN
    Arriaga, J
    Krokhin, AA
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 13 (2-4): : 459 - 462
  • [28] Image encryption algorithm with 2D coupled discrete chaos
    Bo Li
    Jiandong Liu
    Yujie Liu
    Haoqiang Xu
    Jin Wang
    [J]. Multimedia Tools and Applications, 2023, 82 : 35379 - 35400
  • [29] Li-Yorke chaos in 2D discrete systems
    Tian C.
    Chen G.
    [J]. Journal of Applied Mathematics and Computing, 2008, 26 (1-2) : 503 - 515
  • [30] Chaos in Stochastic 2d Galerkin-Navier-Stokes
    Bedrossian, Jacob
    Punshon-Smith, Sam
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (04)