ROBUSTIFICATION OF CHAOS IN 2D MAPS

被引:4
|
作者
Elhadj, Zeraoulia [1 ]
Sprott, J. C. [2 ]
机构
[1] Univ Tebessa, Dept Math, Tebessa 12002, Algeria
[2] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
来源
ADVANCES IN COMPLEX SYSTEMS | 2011年 / 14卷 / 06期
关键词
Robustification of chaos; chaotification; planar discrete mapping; piecewise smooth feedback controller; homoclinic chaos; SNAP-BACK-REPELLER; FEEDBACK-CONTROL; DYNAMICAL-SYSTEMS; INVERSE PROBLEM; DISCRETE CHAOS; ANTICONTROL;
D O I
10.1142/S0219525911003402
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Robust chaos is defined as the absence of periodic windows and coexisting attractors in some neighborhood of the parameter space since the existence of such windows in the chaotic region implies fragility of the chaos. In this paper, we introduce a new terminology called robustification of chaos, which means creating robust chaos (in the sense of the above definition) in a dynamical system. As a first step, a new chaotification (robustification) method to generate robust chaos in planar maps is presented using simple piecewise smooth feedback to create a border collision bifurcation in the resulting system under some realizable conditions. The results are applied to an elementary example to illustrate the validity of the proposed method.
引用
收藏
页码:817 / 827
页数:11
相关论文
共 50 条
  • [1] Quantum chaos in 2D gravity
    Altland, Alexander
    Post, Boris
    Sonner, Julian
    van der Heijden, Jeremy
    Verlinde, Erik
    [J]. SCIPOST PHYSICS, 2023, 15 (02):
  • [2] Personalized 2D color maps
    Waldin, Nicholas
    Bernhard, Matthias
    Rautek, Peter
    Viola, Ivan
    [J]. COMPUTERS & GRAPHICS-UK, 2016, 59 : 143 - 150
  • [3] Bifurcations in 2D Spatiotemporal Maps
    Sahari, Mohamed Lamine
    Taha, Abdel-Kaddous
    Randriamihamison, Louis
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (06):
  • [4] Chaos and operator growth in 2d CFT
    Khetrapal, Surbhi
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (03)
  • [5] Chaos and operator growth in 2d CFT
    Surbhi Khetrapal
    [J]. Journal of High Energy Physics, 2023
  • [6] Analysis of CMB maps with 2D wavelets
    Sanz, JL
    Barreiro, RB
    Cayón, L
    Martínez-González, E
    Ruiz, GA
    Díaz, FJ
    Argüeso, F
    Silk, J
    Toffolatti, L
    [J]. ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1999, 140 (01): : 99 - 105
  • [7] The Wigner distribution and 2D classical maps
    Sakhr, Jamal
    [J]. PHYSICS LETTERS A, 2017, 381 (28) : 2207 - 2213
  • [8] 2D colour maps of galaxies with shells
    Reduzzi, L
    Longhetti, M
    Rampazzo, R
    [J]. SECOND STROMLO SYMPOSIUM: THE NATURE OF ELLIPTICAL GALAXIES, 1997, 116 : 233 - 234
  • [9] Auto Generating Maps in a 2D Environment
    Lazaridis, Lazaros
    Kollias, Konstantinos-Filippos
    Maraslidis, George
    Michailidis, Heraklis
    Papatsimouli, Maria
    Fragulis, George F.
    [J]. HCI IN GAMES, HCI-GAMES 2022, 2022, 13334 : 40 - 50
  • [10] Propagation of chaos for the 2D viscous vortex model
    Fournier, Nicolas
    Hauray, Maxime
    Mischler, Stephane
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (07) : 1423 - 1466