A regression-based Monte Carlo method to solve backward stochastic differential equations

被引:238
|
作者
Gobet, E [1 ]
Lemor, JP
Warin, X
机构
[1] Ecole Polytech, Ctr Math Appl, F-91128 Palaiseau, France
[2] EDF R&D, F-92141 Clamart, France
来源
ANNALS OF APPLIED PROBABILITY | 2005年 / 15卷 / 03期
关键词
backward stochastic differential equations; regression on function bases; Monte Carlo methods;
D O I
10.1214/105051605000000412
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We are concerned with the numerical resolution of backward stochastic differential equations. We propose a new numerical scheme based on iterative regressions on function bases, which coefficients are evaluated using Monte Carlo simulations. A full convergence analysis is derived. Numerical experiments about finance are included, in particular, concerning option pricing with differential interest rates.
引用
收藏
页码:2172 / 2202
页数:31
相关论文
共 50 条
  • [1] A regression-based Monte Carlo method to solve two-dimensional forward backward stochastic differential equations
    Xiaofei Li
    Yi Wu
    Quanxin Zhu
    Songbo Hu
    Chuan Qin
    [J]. Advances in Difference Equations, 2021
  • [2] A regression-based Monte Carlo method to solve two-dimensional forward backward stochastic differential equations
    Li, Xiaofei
    Wu, Yi
    Zhu, Quanxin
    Hu, Songbo
    Qin, Chuan
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [3] A regression-based numerical scheme for backward stochastic differential equations
    Ding, Deng
    Li, Xiaofei
    Liu, Yiqi
    [J]. COMPUTATIONAL STATISTICS, 2017, 32 (04) : 1357 - 1373
  • [4] A regression-based numerical scheme for backward stochastic differential equations
    Deng Ding
    Xiaofei Li
    Yiqi Liu
    [J]. Computational Statistics, 2017, 32 : 1357 - 1373
  • [5] A Monte Carlo method for backward stochastic differential equations with Hermite martingales
    Pelsser, Antoon
    Gnameho, Kossi
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2019, 25 (01): : 37 - 60
  • [6] Regression-based Monte Carlo Integration
    Salaun, Corentin
    Gruson, Adrien
    Hua, Binh-Son
    Hachisuka, Toshiya
    Singh, Gurprit
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2022, 41 (04):
  • [7] Empirical Regression Method for Backward Doubly Stochastic Differential Equations
    Bachouch, Achref
    Gobet, Emmanuel
    Matoussi, Anis
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 358 - 379
  • [8] Multilevel Monte Carlo method for parabolic stochastic partial differential equations
    Barth, Andrea
    Lang, Annika
    Schwab, Christoph
    [J]. BIT NUMERICAL MATHEMATICS, 2013, 53 (01) : 3 - 27
  • [9] Multilevel Monte Carlo method for parabolic stochastic partial differential equations
    Andrea Barth
    Annika Lang
    Christoph Schwab
    [J]. BIT Numerical Mathematics, 2013, 53 : 3 - 27
  • [10] Multilevel Monte Carlo method with applications to stochastic partial differential equations
    Barth, Andrea
    Lang, Annika
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (18) : 2479 - 2498