Drug-target interaction prediction: A Bayesian ranking approach

被引:65
|
作者
Peska, Ladislav [1 ,2 ]
Buza, Krisztian [2 ,3 ]
Koller, Julia [4 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic
[2] Hungarian Acad Sci, Brain Imaging Ctr, Budapest, Hungary
[3] Rheinische Friedrich Wilhelms Univ Bonn, Bonn, Germany
[4] Semmelweis Univ, Inst Genom Med & Rare Disorders, Budapest, Hungary
关键词
Drug repositioning; Drug-target interactions; Machine learning; Bayesian personalized ranking; MATRIX FACTORIZATION TECHNIQUES; POSITIVE ALLOSTERIC MODULATOR; BIPARTITE LOCAL MODELS; PARKINSONS-DISEASE; RECOMMENDER SYSTEMS; OLD DRUGS; INHIBITORS; DISCOVERY; IDENTIFICATION; DEHYDROGENASE;
D O I
10.1016/j.cmpb.2017.09.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and objective: In silico prediction of drug-target interactions (DTI) could provide valuable information and speed-up the process of drug repositioning - finding novel usage for existing drugs. In our work, we focus on machine learning algorithms supporting drug-centric repositioning approach, which aims to find novel usage for existing or abandoned drugs. We aim at proposing a per-drug ranking-based method, which reflects the needs of drug-centric repositioning research better than conventional drug-target prediction approaches. Methods: We propose Bayesian Ranking Prediction of Drug-Target Interactions (BRDTI). The method is based on Bayesian Personalized Ranking matrix factorization (BPR) which has been shown to be an excellent approach for various preference learning tasks, however, it has not been used for DTI prediction previously. In order to successfully deal with DTI challenges, we extended BPR by proposing: (i) the incorporation of target bias, (ii) a technique to handle new drugs and (iii) content alignment to take structural similarities of drugs and targets into account. Results: Evaluation on five benchmark datasets shows that BRDTI outperforms several state-of-the-art approaches in terms of per-drug nDCG and AUC. BRDTI results w.r.t. nDCG are 0.929, 0.953, 0.948, 0.897 and 0.690 for G-Protein Coupled Receptors (GPCR), Ion Channels (IC), Nuclear Receptors (NR), Enzymes (E) and Kinase (K) datasets respectively. Additionally, BRDTI significantly outperformed other methods (BLM-NII, WNN-GIP, NetLapRLS and CMF) w.r.t. nDCG in 17 out of 20 cases. Furthermore, BRDTI was also shown to be able to predict novel drug-target interactions not contained in the original datasets. The average recall at top-10 predicted targets for each drug was 0.762, 0.560, 1.0 0 0 and 0.404 for GPCR, IC, NR, and E datasets respectively. Conclusions: Based on the evaluation, we can conclude that BRDTI is an appropriate choice for researchers looking for an in silico DTI prediction technique to be used in drug-centric repositioning scenarios. BRDTI Software and supplementary materials are available online at www.ksi.mff.cuni.cz/similar to peska/BRDTI. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 21
页数:7
相关论文
共 50 条
  • [31] A multiple kernel learning algorithm for drug-target interaction prediction
    André C. A. Nascimento
    Ricardo B. C. Prudêncio
    Ivan G. Costa
    BMC Bioinformatics, 17
  • [32] Deep Neural Network Architecture for Drug-Target Interaction Prediction
    Monteiro, Nelson R. C.
    Ribeiro, Bernardete
    Arrais, Joel P.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: WORKSHOP AND SPECIAL SESSIONS, 2019, 11731 : 804 - 809
  • [33] Advancing Drug-Target Interaction prediction with BERT and subsequence embedding
    Yang, Zhihui
    Liu, Juan
    Yang, Feng
    Zhang, Xiaolei
    Zhang, Qiang
    Zhu, Xuekai
    Jiang, Peng
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2024, 110
  • [34] A multiple kernel learning algorithm for drug-target interaction prediction
    Nascimento, Andre C. A.
    Prudencio, Ricardo B. C.
    Costa, Ivan G.
    BMC BIOINFORMATICS, 2016, 17
  • [35] Integrating bioassay data for improved prediction of drug-target interaction
    Dai, Weixing
    Li, Li
    Guo, Dianjing
    BIOPHYSICAL CHEMISTRY, 2020, 266
  • [36] Improved drug-target interaction prediction with intermolecular graph transformer
    Liu, Siyuan
    Wang, Yusong
    Deng, Yifan
    He, Liang
    Shao, Bin
    Yin, Jian
    Zheng, Nanning
    Liu, Tie-Yan
    Wang, Tong
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (05)
  • [37] Drug-target interaction prediction via multiple classification strategies
    Ye, Qing
    Zhang, Xiaolong
    Lin, Xiaoli
    BMC BIOINFORMATICS, 2022, 22 (SUPPL 12)
  • [38] Drug-target protein interaction prediction based on AdaBoost algorithm
    基于AdaBoost算法的药物-靶向蛋白作用预测算法
    Xie, Xianfen (xiexianfen2009@jnu.edu.cn), 2018, West China Hospital, Sichuan Institute of Biomedical Engineering (35):
  • [39] Some Remarks on Prediction of Drug-Target Interaction with Network Models
    Zhang, Shao-Wu
    Yan, Xiao-Ying
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2017, 17 (21) : 2456 - 2468
  • [40] Drug-Target Interaction Prediction Based on an Interactive Inference Network
    Chen, Yuqi
    Liang, Xiaomin
    Du, Wei
    Liang, Yanchun
    Wong, Garry
    Chen, Liang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (14)