Drug-target interaction prediction: A Bayesian ranking approach

被引:65
|
作者
Peska, Ladislav [1 ,2 ]
Buza, Krisztian [2 ,3 ]
Koller, Julia [4 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic
[2] Hungarian Acad Sci, Brain Imaging Ctr, Budapest, Hungary
[3] Rheinische Friedrich Wilhelms Univ Bonn, Bonn, Germany
[4] Semmelweis Univ, Inst Genom Med & Rare Disorders, Budapest, Hungary
关键词
Drug repositioning; Drug-target interactions; Machine learning; Bayesian personalized ranking; MATRIX FACTORIZATION TECHNIQUES; POSITIVE ALLOSTERIC MODULATOR; BIPARTITE LOCAL MODELS; PARKINSONS-DISEASE; RECOMMENDER SYSTEMS; OLD DRUGS; INHIBITORS; DISCOVERY; IDENTIFICATION; DEHYDROGENASE;
D O I
10.1016/j.cmpb.2017.09.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and objective: In silico prediction of drug-target interactions (DTI) could provide valuable information and speed-up the process of drug repositioning - finding novel usage for existing drugs. In our work, we focus on machine learning algorithms supporting drug-centric repositioning approach, which aims to find novel usage for existing or abandoned drugs. We aim at proposing a per-drug ranking-based method, which reflects the needs of drug-centric repositioning research better than conventional drug-target prediction approaches. Methods: We propose Bayesian Ranking Prediction of Drug-Target Interactions (BRDTI). The method is based on Bayesian Personalized Ranking matrix factorization (BPR) which has been shown to be an excellent approach for various preference learning tasks, however, it has not been used for DTI prediction previously. In order to successfully deal with DTI challenges, we extended BPR by proposing: (i) the incorporation of target bias, (ii) a technique to handle new drugs and (iii) content alignment to take structural similarities of drugs and targets into account. Results: Evaluation on five benchmark datasets shows that BRDTI outperforms several state-of-the-art approaches in terms of per-drug nDCG and AUC. BRDTI results w.r.t. nDCG are 0.929, 0.953, 0.948, 0.897 and 0.690 for G-Protein Coupled Receptors (GPCR), Ion Channels (IC), Nuclear Receptors (NR), Enzymes (E) and Kinase (K) datasets respectively. Additionally, BRDTI significantly outperformed other methods (BLM-NII, WNN-GIP, NetLapRLS and CMF) w.r.t. nDCG in 17 out of 20 cases. Furthermore, BRDTI was also shown to be able to predict novel drug-target interactions not contained in the original datasets. The average recall at top-10 predicted targets for each drug was 0.762, 0.560, 1.0 0 0 and 0.404 for GPCR, IC, NR, and E datasets respectively. Conclusions: Based on the evaluation, we can conclude that BRDTI is an appropriate choice for researchers looking for an in silico DTI prediction technique to be used in drug-centric repositioning scenarios. BRDTI Software and supplementary materials are available online at www.ksi.mff.cuni.cz/similar to peska/BRDTI. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 21
页数:7
相关论文
共 50 条
  • [1] Drug-Target Interaction Prediction with Weighted Bayesian Ranking
    Shi, Zezhi
    Li, Jianhua
    2018 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND BIOINFORMATICS (ICBEB 2018), 2018, : 19 - 24
  • [2] Drug-Target Interaction Prediction Based on Adversarial Bayesian Personalized Ranking
    Ye, Yihua
    Wen, Yuqi
    Zhang, Zhongnan
    He, Song
    Bo, Xiaochen
    BIOMED RESEARCH INTERNATIONAL, 2021, 2021
  • [3] ALADIN: A New Approach for Drug-Target Interaction Prediction
    Buza, Krisztian
    Peska, Ladislav
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT II, 2017, 10535 : 322 - 337
  • [4] A Random Projection Ensemble Approach to Drug-Target Interaction Prediction
    Chen, Peng
    Hu, ShanShan
    Wang, Bing
    Zhang, Jun
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, ICIC 2015, PT III, 2015, 9227 : 693 - 699
  • [5] Efficient Hyperparameter Optimization by Using Bayesian Optimization for Drug-Target Interaction Prediction
    Ban, Tomohiro
    Ohue, Masahito
    Akiyama, Yutaka
    2017 IEEE 7TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2017,
  • [6] DrugormerDTI: Drug Graphormer for drug-target interaction prediction
    Hu, Jiayue
    Yu, Wang
    Pang, Chao
    Jin, Junru
    Truong Pham, Nhat
    Manavalan, Balachandran
    Wei, Leyi
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 161
  • [7] DrugRPE: Random projection ensemble approach to drug-target interaction prediction
    Zhang, Jun
    Zhu, Muchun
    Chen, Peng
    Wang, Bing
    NEUROCOMPUTING, 2017, 228 : 256 - 262
  • [8] Drug-target interaction prediction with deep learning
    YANG Shuo
    LI Shi-liang
    LI Hong-lin
    中国药理学与毒理学杂志, 2019, (10) : 855 - 855
  • [9] Machine Learning for Drug-Target Interaction Prediction
    Chen, Ruolan
    Liu, Xiangrong
    Jin, Shuting
    Lin, Jiawei
    Liu, Juan
    MOLECULES, 2018, 23 (09):
  • [10] Transfer learning for drug-target interaction prediction
    Dalkiran, Alperen
    Atakan, Ahmet
    Rifaioglu, Ahmet S.
    Martin, Maria J.
    Atalay, Renguel Cetin
    Acar, Aybar C.
    Dogan, Tunca
    Atalay, Volkan
    BIOINFORMATICS, 2023, 39 : I103 - I110