An O(n)-Time Algorithm for the Paired-Domination Problem on Permutation Graphs

被引:0
|
作者
Lappas, Evaggelos [1 ]
Nikolopoulos, Stavros D. [1 ]
Palios, Leonidas [1 ]
机构
[1] Univ Ioannina, Dept Comp Sci, GR-45110 Ioannina, Greece
来源
COMBINATORIAL ALGORITHMS | 2009年 / 5874卷
关键词
permutation graphs; paired-domination; domination; algorithms; complexity; TRANSITIVE ORIENTATION; EDGE DOMINATION; SET;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A vertex subset D of a graph G. is a dominating set if every vertex of G is either in D or is adjacent to a vertex in D. The paired-domination problem on G asks for a minimum-cardinality dominating set S of G such that the subgraph induced by S contains a perfect matching; motivation for this problem comes from the interest in finding a small number of locations to place pairs of mutually visible guards so that the entire set of guards monitors a given area. The paired-domination problem on general graphs is known to be NP-complete. In this paper, we consider the paired-domination problem on permutation graphs. We define an embedding of permutation graphs in the plane which enables us to obtain an equivalent version of the problemn involving points in the plane, and we describe a sweeping algorithm for this problem; if the permutation over the set N(n) = {1, 9,, n} defining a permutation graph G on n vertices is given, our algorithm computes a paired-dominating set of G in O(n) time, and is therefore optimal.
引用
收藏
页码:368 / 379
页数:12
相关论文
共 50 条
  • [21] Paired-Domination Subdivision Numbers of Graphs
    O. Favaron
    H. Karami
    S. M. Sheikholeslami
    [J]. Graphs and Combinatorics, 2009, 25 : 503 - 512
  • [22] Graphs with large paired-domination number
    Henning, Michael A.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2007, 13 (01) : 61 - 78
  • [23] On the Distance Paired-Domination of Circulant Graphs
    Wang, Haoli
    Xu, Xirong
    Yang, Yuansheng
    Wang, Guoqing
    Lue, Kai
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2011, 34 (01) : 1 - 19
  • [24] Paired-domination of Cartesian products of graphs
    Bresar, Bostjan
    Henning, Michael A.
    Rall, Douglas F.
    [J]. UTILITAS MATHEMATICA, 2007, 73 : 255 - 265
  • [25] TOTAL DOMINATION VERSUS PAIRED-DOMINATION IN REGULAR GRAPHS
    Cyman, Joanna
    Dettlaff, Magda
    Henning, Michael A.
    Lemanska, Magdalena
    Raczek, Joanna
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (02) : 573 - 586
  • [26] The diameter of paired-domination vertex critical graphs
    Michael A. Henning
    Christina M. Mynhardt
    [J]. Czechoslovak Mathematical Journal, 2008, 58 : 887 - 897
  • [27] Paired-Domination in Claw-Free Graphs
    Huang, Shenwei
    Kang, Liying
    Shan, Erfang
    [J]. GRAPHS AND COMBINATORICS, 2013, 29 (06) : 1777 - 1794
  • [28] Upper Bounds for the Paired-Domination Numbers of Graphs
    Changhong Lu
    Chao Wang
    Kan Wang
    [J]. Graphs and Combinatorics, 2016, 32 : 1489 - 1494
  • [29] Paired-Domination in Claw-Free Graphs
    Shenwei Huang
    Liying Kang
    Erfang Shan
    [J]. Graphs and Combinatorics, 2013, 29 : 1777 - 1794
  • [30] Algorithmic aspects of upper paired-domination in graphs
    Henning, Michael A.
    Pradhan, D.
    [J]. THEORETICAL COMPUTER SCIENCE, 2020, 804 : 98 - 114