A sparse Bayesian approach to model structure selection and parameter estimation of dynamical systems using spike-and-slab priors

被引:0
|
作者
Nayek, R. [1 ]
Worden, K. [1 ]
Cross, E. J. [1 ]
Fuentes, R. [2 ]
机构
[1] Univ Sheffield, Dept Mech Engn, Dynam Res Grp, Mapping St, Sheffield S1 3JD, S Yorkshire, England
[2] CallSign Ltd, London, England
基金
英国工程与自然科学研究理事会;
关键词
VARIABLE SELECTION; IDENTIFICATION; INFERENCE;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this study, a data-driven equation discovery approach is followed for simultaneous model structure selection and parameter estimation based on sparse linear regression. Adopting a Bayesian framework, a new equation discovery algorithm is proposed using spike-and-slab prior which results in models that are more parsimonious and interpretable. The proposed algorithm is applied to four systems of engineering interest, which include a baseline linear system, a cubic stiffness (Duffing oscillator), an additive quadratic viscous damping and a Coulomb damping. It is shown that the proposed algorithm is effective in identifying the presence and type of nonlinearity in the system. Additionally, comparisons with the Relevance Vector Machine - a previously proposed algorithm for Bayesian equation discovery that uses a Students't prior - indicate that the spike-and-slab priors often achieve stronger model selection consistency and derive models that have superior predictive accuracy.
引用
收藏
页码:3639 / 3653
页数:15
相关论文
共 47 条
  • [31] A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation
    Juliane Liepe
    Paul Kirk
    Sarah Filippi
    Tina Toni
    Chris P Barnes
    Michael P H Stumpf
    [J]. Nature Protocols, 2014, 9 : 439 - 456
  • [32] The influence of flow model selection on finite element model parameter estimation using Bayesian inference
    Hadwin, Paul J.
    Erath, Byron D.
    Peterson, Sean D.
    [J]. JASA EXPRESS LETTERS, 2021, 1 (04):
  • [33] Model selection and parameter estimation for chemical reactions using global model structure
    de Souza, L. G. M.
    Haida, H.
    Thevenin, D.
    Seidel-Morgenstern, A.
    Janiga, G.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2013, 58 : 269 - 277
  • [34] Parameter estimation of Markov-switching Hammerstein systems using the variational Bayesian approach
    Ma, Junxia
    Huang, Biao
    Ding, Feng
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2019, 13 (11): : 1646 - 1655
  • [35] A Novel Approach for Parameter Estimation Of Discrete Dynamical Systems Using Self-Organizing Maps
    Mousazadeh, Ali
    Shekofteh, Yasser
    [J]. 2019 27TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2019), 2019, : 1024 - 1029
  • [36] Model selection and parameter estimation in tumor growth models using approximate Bayesian computation-ABC
    José Mir Justino da Costa
    Helcio Rangel Barreto Orlande
    Wellington Betencurte da Silva
    [J]. Computational and Applied Mathematics, 2018, 37 : 2795 - 2815
  • [37] Model selection and parameter estimation in tumor growth models using approximate Bayesian computation-ABC
    Justino da Costa, Jose Mir
    Barreto Orlande, Helcio Rangel
    da Silva, Wellington Betencurte
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03): : 2795 - 2815
  • [38] Rasch Model Parameter Estimation in the Presence of a Nonnormal Latent Trait Using a Nonparametric Bayesian Approach
    Finch, Holmes
    Edwards, Julianne M.
    [J]. EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2016, 76 (04) : 662 - 684
  • [39] Bayesian model selection and parameter estimation for possibly asymmetric and non-stationary time series using a reversible jump Markov chain Monte Carlo approach
    Oh, MS
    Shin, DW
    [J]. JOURNAL OF APPLIED STATISTICS, 2002, 29 (05) : 771 - 789
  • [40] Least Squares based Iterative Parameter Estimation Algorithm for Stochastic Dynamical Systems with ARMA Noise Using the Model Equivalence
    Ding, Feng
    Meng, Dandan
    Dai, Jiyang
    Li, Qishen
    Alsaedi, Ahmed
    Hayat, Tasawar
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2018, 16 (02) : 630 - 639