Learning for non-stationary Dirichlet processes

被引:7
|
作者
Quinn, A. [1 ]
Karny, M. [2 ]
机构
[1] Univ Dublin Trinity Coll, Dept Elect & Elect Engn, Dublin 2, Ireland
[2] Acad Sci Czech Republic, Inst Informat & Automat, Dept Adapt Syst, Brno, Czech Republic
关键词
non-parametric process; non-parametric sequential stopping rule; non-stationary Dirichlet process; non-parametric stabilized forgetting;
D O I
10.1002/acs.949
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Dirichlet process prior (DPP) is used to model an unknown probability distribution, F. This eliminates the need for parametric model assumptions, providing robustness in problems where there is significant model uncertainty. Two important parametric techniques for learning are extended to this non-parametric context for the first time. These are (i) sequential stopping, which proposes an optimal stopping time for online learning of F using i.i.d. sampling; and (ii) stabilized forgetting, which updates the DPP in response to changes in F, but without the need for a formal transition model. In each case, a practical and highly tractable algorithm is revealed, and simulation studies are reported. Copyright (C) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:827 / 855
页数:29
相关论文
共 50 条
  • [1] Learning granger causality for non-stationary Hawkes processes
    Chen, Wei
    Chen, Jibin
    Cai, Ruichu
    Liu, Yuequn
    Hao, Zhifeng
    [J]. NEUROCOMPUTING, 2022, 468 : 22 - 32
  • [2] STATIONARY OPERATOR FOR NON-STATIONARY PROCESSES
    ZUBAREV, DN
    [J]. DOKLADY AKADEMII NAUK SSSR, 1965, 164 (03): : 537 - &
  • [3] Surveillance of non-stationary processes
    Lazariv, Taras
    Schmid, Wolfgang
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2019, 103 (03) : 305 - 331
  • [4] NON-STATIONARY PROCESSES AND SPECTRUM
    NAGABHUSHANAM, K
    BHAGAVAN, CS
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (05): : 1203 - +
  • [5] ON PREDICTION OF NON-STATIONARY PROCESSES
    ABDRABBO, NA
    PRIESTLE.MB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1967, 29 (03) : 570 - &
  • [6] Predicting non-stationary processes
    Ryabko, Daniil
    Hutter, Marcus
    [J]. APPLIED MATHEMATICS LETTERS, 2008, 21 (05) : 477 - 482
  • [7] Surveillance of non-stationary processes
    Taras Lazariv
    Wolfgang Schmid
    [J]. AStA Advances in Statistical Analysis, 2019, 103 : 305 - 331
  • [8] An Entropy Measure of Non-Stationary Processes
    Liu, Ling Feng
    Hu, Han Ping
    Deng, Ya Shuang
    Ding, Nai Da
    [J]. ENTROPY, 2014, 16 (03) : 1493 - 1500
  • [9] SUPERIMPOSED NON-STATIONARY RENEWAL PROCESSES
    BLUMENTHAL, S
    GREENWOO.JA
    HERBACH, L
    [J]. JOURNAL OF APPLIED PROBABILITY, 1971, 8 (01) : 184 - +
  • [10] Operatorial non-stationary harmonizable processes
    Valusescu, I
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 695 - 696