Spectral analysis of multifractional LRD functional time series

被引:3
|
作者
Ruiz-Medina, M. Dolores [1 ]
机构
[1] Univ Granada, Fac Sci, Dept Stat & Operat Res, Campus Fuente Nueva S-N, Granada 18071, Spain
关键词
Minimum contrast parameter estimation; Multifractional functional ARIMA models; Multifractional in time evolution equations; Spatial-varying long-range dependence range; LONG-RANGE DEPENDENCE; STOCHASTIC-PROCESSES; LIMIT-THEOREMS; ESTIMATORS;
D O I
10.1007/s13540-022-00053-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Long Range Dependence (LRD) in functional sequences is characterized in the spectral domain under suitable conditions. Particularly, multifractionally integrated functional autoregressive moving averages processes can be introduced in this framework. The convergence to zero in the Hilbert-Schmidt operator norm of the integrated bias of the periodogram operator is proved. Under a Gaussian scenario, a weak-consistent parametric estimator of the long-memory operator is then obtained by minimizing, in the norm of bounded linear operators, a divergence information functional loss. The results derived allow, in particular, to develop inference from the discrete sampling of the Gaussian solution to fractional and multifractional pseudodifferential models introduced in Anh et al. (Fract Calc Appl Anal 19(5):1161-1199, 2016; 19(6):1434-1459, 2016) and Kelbert (Adv Appl Probab 37(1):1-25, 2005).
引用
收藏
页码:1426 / 1458
页数:33
相关论文
共 50 条
  • [1] Spectral analysis of multifractional LRD functional time series
    M. Dolores Ruiz-Medina
    [J]. Fractional Calculus and Applied Analysis, 2022, 25 : 1426 - 1458
  • [2] LRD spectral analysis of multifractional functional time series on manifolds
    Ovalle-Munoz, Diana P.
    Ruiz-Medina, M. Dolores
    [J]. TEST, 2024, 33 (02) : 564 - 588
  • [3] LRD spectral analysis of multifractional functional time series on manifolds (Jan, 10.1007/s11749-023-00913-7, 2024)
    Ovalle-Munoz, Diana P.
    Ruiz-Medina, M. Dolores
    [J]. TEST, 2024, 33 (02) : 631 - 631
  • [4] Statistical error analysis on recording LRD traffic time series
    Li, M
    [J]. NETWORK AND PARALLEL COMPUTING, PROCEEDINGS, 2004, 3222 : 403 - 406
  • [5] Analysis of LRD Series with Time-Varying Hurst Parameter
    Ledesma Orozco, Sergio
    Cerda Villafana, Gustavo
    Avina Cervantes, Gabriel
    Hernandez Fusilier, Donato
    Torres Cisneros, Miguel
    [J]. COMPUTACION Y SISTEMAS, 2010, 13 (03): : 295 - 312
  • [6] SPECTRAL ANALYSIS OF TIME SERIES
    VIZKOVA, Z
    [J]. EKONOMICKO-MATEMATICKY OBZOR, 1970, 6 (03): : 285 - 308
  • [7] Spectral Analysis for Some Multifractional Gaussian Processes
    Karol, A., I
    Nazarov, A., I
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2021, 28 (04) : 488 - 500
  • [8] Spectral Analysis for Some Multifractional Gaussian Processes
    A. I. Karol
    A. I. Nazarov
    [J]. Russian Journal of Mathematical Physics, 2021, 28 : 488 - 500
  • [9] Intermittency and multifractional Brownian character of geomagnetic time series
    Consolini, G.
    De Marco, R.
    De Michelis, P.
    [J]. NONLINEAR PROCESSES IN GEOPHYSICS, 2013, 20 (04) : 455 - 466
  • [10] Robust Clustering for Time Series Using Spectral Densities and Functional Data Analysis
    Rivera-Garcia, Diego
    Angel Garcia-Escudero, Luis
    Mayo-Iscar, Agustin
    Ortega, Joaquin
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT II, 2017, 10306 : 142 - 153