LRD spectral analysis of multifractional functional time series on manifolds

被引:0
|
作者
Ovalle-Munoz, Diana P. [1 ]
Ruiz-Medina, M. Dolores [1 ]
机构
[1] Univ Granada, Fac Sci, Avd Fuente Nueva S-N, Granada 18071, Spain
关键词
Connected and compact two-point homogeneous spaces; Ibragimov contrast function; LRD multifractionally integrated functional time series; Manifold cross-time RFs; Multifractional spherical stochastic partial differential equations; RANDOM-FIELDS; LIMIT;
D O I
10.1007/s11749-023-00913-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper addresses the estimation of the second-order structure of a manifold cross-time random field (RF) displaying spatially varying Long Range Dependence (LRD), adopting the functional time series framework introduced in Ruiz-Medina (Fract Calc Appl Anal 25:1426-1458, 2022). Conditions for the asymptotic unbiasedness of the integrated periodogram operator in the Hilbert-Schmidt operator norm are derived beyond structural assumptions. Weak-consistent estimation of the long-memory operator is achieved under a semiparametric functional spectral framework in the Gaussian context. The case where the projected manifold process can display Short Range Dependence (SRD) and LRD at different manifold scales is also analyzed. The performance of both estimation procedures is illustrated in the simulation study, in the context of multifractionally integrated spherical functional autoregressive-moving average (SPHARMA(p,q)) processes.
引用
收藏
页码:564 / 588
页数:25
相关论文
共 50 条
  • [1] Spectral analysis of multifractional LRD functional time series
    Ruiz-Medina, M. Dolores
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (04) : 1426 - 1458
  • [2] Spectral analysis of multifractional LRD functional time series
    M. Dolores Ruiz-Medina
    [J]. Fractional Calculus and Applied Analysis, 2022, 25 : 1426 - 1458
  • [3] Statistical error analysis on recording LRD traffic time series
    Li, M
    [J]. NETWORK AND PARALLEL COMPUTING, PROCEEDINGS, 2004, 3222 : 403 - 406
  • [4] Analysis of LRD Series with Time-Varying Hurst Parameter
    Ledesma Orozco, Sergio
    Cerda Villafana, Gustavo
    Avina Cervantes, Gabriel
    Hernandez Fusilier, Donato
    Torres Cisneros, Miguel
    [J]. COMPUTACION Y SISTEMAS, 2010, 13 (03): : 295 - 312
  • [5] SPECTRAL ANALYSIS OF TIME SERIES
    VIZKOVA, Z
    [J]. EKONOMICKO-MATEMATICKY OBZOR, 1970, 6 (03): : 285 - 308
  • [6] Spectral Analysis for Some Multifractional Gaussian Processes
    Karol, A., I
    Nazarov, A., I
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2021, 28 (04) : 488 - 500
  • [7] Spectral Analysis for Some Multifractional Gaussian Processes
    A. I. Karol
    A. I. Nazarov
    [J]. Russian Journal of Mathematical Physics, 2021, 28 : 488 - 500
  • [8] Intermittency and multifractional Brownian character of geomagnetic time series
    Consolini, G.
    De Marco, R.
    De Michelis, P.
    [J]. NONLINEAR PROCESSES IN GEOPHYSICS, 2013, 20 (04) : 455 - 466
  • [9] Robust Clustering for Time Series Using Spectral Densities and Functional Data Analysis
    Rivera-Garcia, Diego
    Angel Garcia-Escudero, Luis
    Mayo-Iscar, Agustin
    Ortega, Joaquin
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT II, 2017, 10306 : 142 - 153
  • [10] ROLE OF SPECTRAL ANALYSIS IN TIME SERIES ANALYSIS
    PARZEN, E
    [J]. REVUE DE L INSTITUT INTERNATIONAL DE STATISTIQUE-REVIEW OF THE INTERNATIONAL STATISTICAL INSTITUTE, 1967, 35 (02): : 125 - &