Asymptotic Stability of Minkowski Space-Time with Non-compactly Supported Massless Vlasov Matter

被引:21
|
作者
Bigorgne, Leo [1 ]
Fajman, David [2 ]
Joudioux, Jeremie [3 ]
Smulevici, Jacques [4 ]
Thaller, Maximilian [5 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge, England
[2] Univ Vienna, Fac Phys, Gravitat Phys, Vienna, Austria
[3] Max Planck Inst Gravitat Phys, Potsdam, Germany
[4] Sorbonne Univ, Lab Jacques Louis Lions, Paris, France
[5] Chalmers Univ Technol, Dept Math Sci, Gothenburg, Sweden
基金
欧洲研究理事会; 瑞典研究理事会; 奥地利科学基金会;
关键词
NONLINEAR FUTURE STABILITY; EINSTEIN VACUUM EQUATIONS; GLOBAL EXISTENCE; STATIC SOLUTIONS; FLRW FAMILY; SYSTEM; SURFACES; FLOW;
D O I
10.1007/s00205-021-01639-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the global asymptotic stability of the Minkowski space for the massless Einstein-Vlasov system in wave coordinates. In contrast with previous work on the subject, no compact support assumptions on the initial data of the Vlasov field in space or the momentum variables are required. In fact, the initial decay in v is optimal. The present proof is based on vector field and weighted vector field techniques for Vlasov fields, as developed in previous work of Fajman, Joudioux, and Smulevici, and heavily relies on several structural properties of the massless Vlasov equation, similar to the null and weak null conditions. To deal with the weak decay rate of the metric, we propagate well-chosen hierarchized weighted energy norms which reflect the strong decay properties satisfied by the particle density far from the light cone. A particular analytical difficulty arises at the top order, when we do not have access to improved pointwise decay estimates for certain metric components. This difficulty is resolved using a novel hierarchy in the massless Einstein-Vlasov system, which exploits the propagation of different growth rates for the energy norms of different metric components.
引用
收藏
页码:1 / 147
页数:147
相关论文
共 31 条
  • [21] EXISTENCE OF MASSLESS AND NON-EXISTENCE OF MASSIVE SCALAR WAVES WITH GRAVITATIONAL WAVES FOR GENERALIZED PERES SPACE-TIME
    Patil, V. R.
    Pawar, D. D.
    Deshmukh, A. G.
    [J]. JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2010, 8 (01) : 11 - 19
  • [22] Asymptotic Analysis of Coherent and Differential Space-Time Codes in Non-Gaussian Noise and Interference
    Nezampour, Ali
    Schober, Robert
    Ma, Yao
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2009, 57 (11) : 3353 - 3365
  • [23] Asymptotic-stability of the inhomogeneous Boltzmann equation in the Robertson-Walker space-time with Israel particles
    Takou, Etienne
    Ciake Ciake, Fidele L.
    [J]. APPLICABLE ANALYSIS, 2020, 99 (07) : 1122 - 1135
  • [24] Non-minimal matter-geometry coupling in Bianchi I space-time
    Sharma, Lokesh Kumar
    Yadav, Anil Kumar
    Sahoo, P. K.
    Singh, Benoy Kumar
    [J]. RESULTS IN PHYSICS, 2018, 10 : 738 - 742
  • [25] Yang-Mills-Vlasov system for particles with non-abelian gauge charge density on a space-time curve
    Noutchegueme, N
    Noundjeu, P
    [J]. ANNALES HENRI POINCARE, 2000, 1 (02): : 385 - 404
  • [26] Asymptotic Analysis of Space-Time Codes With Mahalonobis Distance Decoding in Non-Gaussian Noise and Interference
    Nezampour, Ali
    Schober, Robert
    Ma, Yao
    [J]. 2008 EUROPEAN WIRELESS CONFERENCE, 2008, : 268 - +
  • [27] Non-inertial frames in Minkowski space-time, accelerated either mathematical or dynamical observers and comments on non-inertial relativistic quantum mechanics
    Crater, Horace W.
    Lusanna, Luca
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (10)
  • [28] Testing quantum mechanics in non-Minkowski space-time with high power lasers and 4th generation light sources
    B. J. B. Crowley
    R. Bingham
    R. G. Evans
    D. O. Gericke
    O. L. Landen
    C. D. Murphy
    P. A. Norreys
    S. J. Rose
    Th Tschentscher
    C. H.-T Wang
    J. S. Wark
    G. Gregori
    [J]. Scientific Reports, 2
  • [29] Testing quantum mechanics in non-Minkowski space-time with high power lasers and 4th generation light sources
    Crowley, B. J. B.
    Bingham, R.
    Evans, R. G.
    Gericke, D. O.
    Landen, O. L.
    Murphy, C. D.
    Norreys, P. A.
    Rose, S. J.
    Tschentscher, Th
    Wang, C. H. -T
    Wark, J. S.
    Gregori, G.
    [J]. SCIENTIFIC REPORTS, 2012, 2
  • [30] On the soliton resolution and the asymptotic stability of N-soliton solution for the Wadati-Konno-Ichikawa equation with finite density initial data in space-time solitonic regions
    Li, Zhi-Qiang
    Tian, Shou-Fu
    Yang, Jin-Jie
    [J]. ADVANCES IN MATHEMATICS, 2022, 409