An Alternative to ROC and AUC Analysis of Classifiers

被引:0
|
作者
Klawonn, Frank [1 ,2 ]
Hoeppner, Frank [1 ]
May, Sigrun [3 ]
机构
[1] Ostfalia Univ Appl Sci, Dept Comp Sci, Salzdahlumer Str 46-48, D-38302 Wolfenbuettel, Germany
[2] Helmholtz Ctr Infect Res, Bioinformat & Stat, D-38124 Braunschweig, Germany
[3] Helmholtz Ctr Infect Res, Biolog Syst Anal, D-38124 Braunschweig, Germany
关键词
CURVES; AREA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Performance evaluation of classifiers is a crucial step for selecting the best classifier or the best set of parameters for a classifier. The misclassification rate of a classifier is often too simple because it does not take into account that misclassification for different classes might have more or less serious consequences. On the other hand, it is often difficult to specify exactly the consequences or costs of misclassifications. ROC and AUC analysis try to overcome these problems, but have their own disadvantages and even inconsistencies. We propose a visualisation technique for classifier performance evaluation and comparison that avoids the problems of ROC and AUC analysis.
引用
收藏
页码:210 / +
页数:2
相关论文
共 50 条
  • [21] The ROC isometrics approach to construct reliable classifiers
    Vanderlooy, Stijn
    Sprinkhuizen-Kuyper, Ida G.
    Smirnov, Evgueni N.
    van den Herik, H. Jaap
    [J]. INTELLIGENT DATA ANALYSIS, 2009, 13 (01) : 3 - 37
  • [22] Evaluation of ANN classifiers during supervised training with ROC analysis and cross validation
    Sovierzoski, Miguel Antonio
    Marques Argoud, Fernanda Isabel
    de Azevedo, Fernando Mendes
    [J]. BMEI 2008: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOL 1, 2008, : 274 - +
  • [23] Deriving biased classifiers for better ROC performance
    Blockeel, Hendrik
    Struyf, Jan
    [J]. Informatica (Ljubljana), 2002, 26 (01) : 77 - 84
  • [24] Limitation of ROC in Evaluation of Classifiers for Imbalanced Data
    Movahedi, F.
    Antaki, J. F.
    [J]. JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2021, 40 (04): : S413 - S413
  • [25] Exploration of Analysis Methods for Diagnostic Imaging Tests: Problems with ROC AUC and Confidence Scores in CT Colonography
    Mallett, Susan
    Halligan, Steve
    Collins, Gary S.
    Altman, Doug G.
    [J]. PLOS ONE, 2014, 9 (10):
  • [26] The use of ROC and AUC in the validation of objective image fusion evaluation metrics
    Zhang, Xiaoli
    Li, Xiongfei
    Feng, Yuncong
    Liu, Zhaojun
    [J]. SIGNAL PROCESSING, 2015, 115 : 38 - 48
  • [27] Scaling of true and apparent ROC AUC with number of observations and number of variables
    Pinsky, PF
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2005, 34 (03) : 771 - 781
  • [28] Some results on the area under the curve (AUC) for ROC curves.
    Walter, SD
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2002, 155 (11) : s48 - s48
  • [29] Learning vector quantization classifiers for ROC-optimization
    Villmann, T.
    Kaden, M.
    Hermann, W.
    Biehl, M.
    [J]. COMPUTATIONAL STATISTICS, 2018, 33 (03) : 1173 - 1194
  • [30] Evaluating the fusion of multiple classifiers via ROC curves
    Hill, JM
    Oxley, ME
    Bauer, KW
    [J]. SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XII, 2003, 5096 : 411 - 422