Quantum conditional relative entropy and quasi-factorization of the relative entropy

被引:16
|
作者
Capel, Angela [1 ]
Lucia, Angelo [2 ,3 ,5 ]
Perez-Garcia, David [1 ,4 ]
机构
[1] Inst Ciencias Matemat CSIC UAM UC3M UCM, C Nicolas Cabrera 13-15,Campus Cantoblanco, Madrid 28049, Spain
[2] Univ Copenhagen, Dept Math Sci, QMATH, Univ Pk 5, DK-2100 Copenhagen, Denmark
[3] Univ Copenhagen, Niels Bohr Inst, NBIA, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
[4] Univ Complutense Madrid, Dept Anal Matemat, E-28040 Madrid, Spain
[5] CALTECH, 1200 E Calif Blvd,MC 305-16, Pasadena, CA 91125 USA
基金
欧洲研究理事会;
关键词
quantum relative entropy; conditional relative entropy; log-Sobolev inequality; quantum dissipative evolution; quasi-factorization of the relative entropy; mixing time; STATES; MONOTONICITY; INEQUALITIES; INFORMATION; MAPS;
D O I
10.1088/1751-8121/aae4cf
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The existence of a positive log-Sobolev constant implies a bound on the mixing time of a quantum dissipative evolution under the Markov approximation. For classical spin systems, such constant was proven to exist, under the assumption of a mixing condition in the Gibbs measure associated to their dynamics, via a quasi-factorization of the entropy in terms of the conditional entropy in some sub-sigma-algebras. In this work we analyze analogous quasi-factorization results in the quantum case. For that, we define the quantum conditional relative entropy and prove several quasi-factorization results for it. As an illustration of their potential, we use one of them to obtain a positive log-Sobolev constant for the heat-bath dynamics with product fixed point.
引用
收藏
页数:41
相关论文
共 50 条
  • [21] Monotonicity of quantum relative entropy revisited
    Petz, D
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2003, 15 (01) : 79 - 91
  • [22] Monotonicity of quantum relative entropy and recoverability
    Berta, Mario
    Lemm, Marius
    Wilde, Mark M.
    [J]. Quantum Information and Computation, 2015, 15 (15-16): : 1333 - 1354
  • [23] An ergodic theorem for the quantum relative entropy
    Bjelakovic, I
    Siegmund-Schultze, R
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 247 (03) : 697 - 712
  • [24] Quantum Relative Entropy of Tagging and Thermodynamics
    Diazdelacruz, Jose
    [J]. ENTROPY, 2020, 22 (02)
  • [25] Continuity bounds on the quantum relative entropy
    Audenaert, KMR
    Eisert, J
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (10)
  • [26] Quantum relative entropy uncertainty relation
    Salazar, Domingos S. P.
    [J]. PHYSICAL REVIEW E, 2024, 109 (01)
  • [27] Chain Rule for the Quantum Relative Entropy
    Fang, Kun
    Fawzi, Omar
    Renner, Renato
    Sutter, David
    [J]. PHYSICAL REVIEW LETTERS, 2020, 124 (10)
  • [28] Machine learning with quantum relative entropy
    Tsuda, Koji
    [J]. INTERNATIONAL WORKSHOP ON STATISTICAL-MECHANICAL INFORMATICS 2008 (IW-SMI 2008), 2009, 143
  • [29] On the limit relation for the quantum relative entropy
    Bernad, J. Z.
    Frigyik, A. B.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (06)
  • [30] Relative entropy between quantum ensembles
    Luo, Shunlong
    Li, Nan
    Cao, Xuelian
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2009, 59 (02) : 223 - 237