Highly conductive and nonflammable composite polymer electrolytes for rechargeable quasi-solid-state Li-metal batteries

被引:30
|
作者
Dai, Ziyang [1 ]
Yu, Jing [2 ]
Liu, Jiapeng [2 ]
Liu, Rong [1 ]
Sun, Qi [1 ]
Chen, Dengjie [1 ]
Ciucci, Francesco [2 ,3 ]
机构
[1] Jinan Univ, Coll Chem & Mat Sci, Dept Chem, Guangzhou 510632, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Hong Kong, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid-state battery; Perovskite Li conductor; Ionic conductivity; Nonflammable composite polymer membrane; TOTAL-ENERGY CALCULATIONS; HIGH IONIC-CONDUCTIVITY; FLUOROETHYLENE CARBONATE; LITHIUM BATTERIES; STABILITY; CHALLENGES; INTERFACE; MEMBRANE; SN; GE;
D O I
10.1016/j.jpowsour.2020.228182
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state Li-metal batteries are promising as next-generation energy storage devices. However, the main bottlenecks are the poor conductivity of the solid electrolyte and the high interfacial resistance. While polymers exhibit a lower interfacial resistance in comparison to ceramics, they often require the inclusion of flammable solvents. In this work, highly conductive composite polymer electrolyte (CPE) membranes are prepared by integrating a poly(vinylidene fluoride) matrix (PVDF) with a Li-conductive perovskite (i.e., Li0.38Sr0.44Ta0.70H-f(0.30)O(2.95)F(0.05), LSTHF), a flame-retarding solvent (i.e., trimethyl phosphate (TMP)), and a Li salt (i.e., LiClO4). The CPE membrane with 10 wt% LSTHF (CPE-10) exhibits conductivities as high as 0.53 mS cm(-1) at room temperature (RT) and 0.36 mS cm(-1) at 0 degrees C. Furthermore, prototype batteries, including the CPE-10 electrolyte, show high initial discharge capacities, good rate capabilities, and stable cycling performance at either RT or 5 and 60 degrees C. This study illustrates that including a Li-conductive perovskite and TMP in a PVDF-based polymer material could yield safe, high-performance quasi-solid-state Li-metal batteries capable of operating over a relatively wide temperature range.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [41] A functional silicon composite polymer electrolyte with hydrofluoric acid scavenging for quasi-solid-state lithium metal batteries
    Zhao, Li
    Yang, Li
    Cheng, Yu
    Zhang, Hong
    Du, Lulu
    Peng, Wei
    Abdelmaoula, Ahmed Eissa
    Xu, Lin
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (31) : 20337 - 20347
  • [42] A review on design considerations in polymer and polymer composite solid-state electrolytes for solid Li batteries
    Kundu, Sumana
    Ein-Eli, Yair
    JOURNAL OF POWER SOURCES, 2023, 553
  • [43] Enabling highly stable lithium metal batteries by using dual-function additive catalyzed in-built quasi-solid-state polymer electrolytes
    Li, Zhenchao
    Tang, Wenhao
    Deng, Yirui
    Zhou, Miaomiao
    Wang, Xiaodong
    Liu, Ruiping
    Wang, Chang-an
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (43) : 23047 - 23057
  • [44] Mesoporous silica/ionic liquid quasi-solid-state electrolytes and their application in lithium metal batteries
    Li, Xiaowei
    Zhang, Zhengxi
    Yin, Kun
    Yang, Li
    Tachibana, Kazuhiro
    Hirano, Shin-ichi
    JOURNAL OF POWER SOURCES, 2015, 278 : 128 - 132
  • [45] In situ interfacial reactions in hydride-oxide composite electrolytes for stable all-solid-state Li-metal batteries
    Zeng, Shunqin
    Zhao, Meinan
    Xie, Chen
    Li, Jianhui
    Ding, Xiaoli
    He, Liqing
    Li, Yongtao
    Zhang, Qingan
    Li, Hai-Wen
    INORGANIC CHEMISTRY FRONTIERS, 2024, 11 (11) : 3323 - 3333
  • [46] Hydrogenated borophene nanosheets based multifunctional quasi-solid-state electrolytes for lithium metal batteries
    Ding, Junwei
    Zheng, Huaiyang
    Wang, Shiwen
    Ji, Xiaoyan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 615 : 79 - 86
  • [47] Intrinsically Nonflammable Ionic Liquid-Based Localized Highly Concentrated Electrolytes Enable High-Performance Li-Metal Batteries
    Wang, Zhicheng
    Zhang, Fengrui
    Sun, Yiyang
    Zheng, Lei
    Shen, Yanbin
    Fu, Daosong
    Li, Wanfei
    Pan, Anran
    Wang, Lei
    Xu, Jingjing
    Hu, Jianchen
    Wu, Xiaodong
    ADVANCED ENERGY MATERIALS, 2021, 11 (17)
  • [48] Quasi-solid-state electrolytes for lithium sulfur batteries: Advances and perspectives
    Judez, Xabier
    Martinez-Ibanez, Maria
    Santiago, Alexander
    Armand, Michel
    Zhang, Heng
    Li, Chunmei
    JOURNAL OF POWER SOURCES, 2019, 438
  • [49] Quasi-Solid-State Polymer Electrolyte Based on Highly Concentrated LiTFSI Complexing DMF for Ambient-Temperature Rechargeable Lithium Batteries
    Fang, Li
    Sun, Wang
    Hou, Wenshuo
    Mao, Yuqiong
    Wang, Zhenhua
    Sun, Kening
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (23) : 7971 - 7981
  • [50] Unconventional PEO-PPC quasi-solid state blend polymer electrolyte for high efficiency solid-state Li-metal batteries
    Bertoli, Luca
    Gabriele, Giacomo
    Gibertini, Eugenio
    Magagnin, Luca
    JOURNAL OF ENERGY STORAGE, 2024, 81