Thermally stratified nanofluid flow over porous surface cone with Cattaneo-Christov heat flux approach and heat generation (or) absorption

被引:0
|
作者
Rawat, Sawan Kumar [1 ]
Upreti, Himanshu [1 ]
Kumar, Manoj [1 ]
机构
[1] GB Pant Univ Agr & Technol, Dept Math Stat & Comp Sci, Pantnagar 263145, Uttar Pradesh, India
来源
SN APPLIED SCIENCES | 2020年 / 2卷 / 02期
关键词
Cattaneo-Christov model; Thermal stratification; Nanofluid; Suction; Heat; Generation/absorption; STAGNATION-POINT FLOW; HOMOGENEOUS-HETEROGENEOUS REACTIONS; ENTROPY GENERATION; GYROTACTIC MICROORGANISMS; VISCOUS DISSIPATION; STRETCHING SHEET; WATER NANOFLUID; SILVER-WATER; CONVECTION; RADIATION;
D O I
10.1007/s42452-020-2099-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study deals with Cu-water nanofluid flow over porous surface cone in a thermally stratified medium. Heat transfer is examined with Cattaneo-Christov heat flux model instead of Fourier's law along heat generation/absorption. Effects of free convection, magnetic field and suction are also reported. Transformations are utilized to attain constitutive laws of flow in form of ordinary differential equations, which are then dealt with Runge-Kutta-Fehlberg and shooting scheme. Physical impacts of parameters involved are discussed and presented graphically and through tabular values. Velocity enhances with Grashof number but not with magnetic parameter. Heat generation/absorption, thermal stratification and thermal relaxation parameter reduces temperature. The effect of heat generation/absorption and thermal relaxation parameter is to increase heat transfer. Results reveal that effects of thermal stratification parameter becomes less dominant to wall heat transfer coefficient with intensification in heat generation/absorption parameter.
引用
收藏
页数:18
相关论文
共 50 条