Domain wall dynamics in two-dimensional van der Waals ferromagnets

被引:19
|
作者
Abdul-Wahab, Dina [1 ]
Iacocca, Ezio [2 ,3 ]
Evans, Richard F. L. [4 ]
Bedoya-Pinto, Amilcar [5 ]
Parkin, Stuart [5 ]
Novoselov, Kostya S. [6 ,7 ,8 ]
Santos, Elton J. G. [9 ,10 ]
机构
[1] Queens Univ Belfast, Sch Math & Phys, Belfast BT7, Antrim, North Ireland
[2] Univ Colorado, Ctr Magnetism & Magnet Mat, Colorado Springs, CO 80918 USA
[3] Northumbria Univ, Dept Math Phys & Elect Engn, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
[4] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
[5] Max Planck Inst Microstruct Phys, NISE Dept, Halle, Germany
[6] Natl Univ Singapore, Inst Funct Intelligent Mat, S9 4 Sci Dr 2, Singapore 117544, Singapore
[7] Chongqing 2D Mat Inst, Liangjiang New Area, Chongqing 400714, Peoples R China
[8] Univ Manchester, Natl Graphene Inst, Oxford Rd, Manchester M13 9PL, Lancs, England
[9] Univ Edinburgh, Inst Condensed Matter Phys & Complex Syst, Sch Phys & Astron, Edinburgh EH9 3FD, Midlothian, Scotland
[10] Univ Edinburgh, Higgs Ctr Theoret Phys, Edinburgh EH9 3FD, Midlothian, Scotland
来源
APPLIED PHYSICS REVIEWS | 2021年 / 8卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
CURRENT-DRIVEN DYNAMICS; SPIN TORQUE; MOTION; GATE;
D O I
10.1063/5.0062541
中图分类号
O59 [应用物理学];
学科分类号
摘要
Domain wall motion is in the core of many information technologies ranging from storage [Beach et al., J. Magn. Magn. Mater. 320, 1272-1281 (2008)], processing [Tatara et al., Phys. Rep. 468, 213-301 (2008)], and sensing [Ralph and Stiles, J. Magn. Magn. Mater. 320, 1190-1216 (2008)] up to novel racetrack memory architectures [Parkin et al., Science 320, 190-194 (2008)]. The finding of magnetism in two-dimensional (2D) van der Waals (vdW) materials [Huang et al., Nature 546, 270 (2017); Gong et al., Nature 546, 265-269 (2017); Guguchia et al., Sci. Adv. 4, eaat3672 (2018); Klein et al., Science 360, 1218-1222 (2018)] has offered a new frontier for the exploration and understanding of domain walls at the limit of few atom-thick layers. However, to use 2D vdW magnets for building spintronics nanodevices such as domain-wall based logic [Allwood et al., Science 309, 1688-1692 (2005); Luo et al., Nature 579, 214-218 (2020); Xu et al., Nat. Nanotechnol. 3, 97-100 (2008)], it is required to gain control of their domain wall dynamics by external driving forces such as spin-polarized currents or magnetic fields, which have so far been elusive. Here, we show that electric currents as well as magnetic fields can efficiently move domain walls in the recently discovered 2D vdW magnets CrI3 and CrBr3 at low temperatures and robust down to monolayer. We realize field- and current-driven domain wall motion with velocities up to 1020 m s(-1), which are comparable to the state-of-the-art materials for domain-wall based applications [Yang et al., Nat. Nanotechnol. 10, 221-226 (2015); Woo et al., Nat. Mater. 15, 501-506 (2016); Velez et al., Nat. Commun. 10, 4750 (2019); Siddiqui et al., Phys. Rev. Lett. 121, 057701 (2018); Ryu et al., Nat. Nanotechnol. 8, 527-533 (2013)]. Domain walls keep their coherence driven by the spin-transfer torque induced by the current and magnetic fields up to large values of about 12 x 10 9 A cm(-2) and 5 T, respectively. For larger magnitudes of current or field, a transition to a hydrodynamic spin-liquid regime is observed with the emission of a periodic train of spin-wave solitons with modulational instability [Rabinovich and Trubetskov, Oscillations and Waves: In Linear and Nonlinear Systems, Mathematics and its Applications (Springer Netherlands, 2011)]. The emitted waveform achieves terahertz (THz) frequency in a wide range of fields and current densities, which opens up perspectives for reconfigurable magnonic devices. Moreover, we found that these spin-waves can transport spin angular momentum through the layers over distances as long as 10 mu m without losses for the transport of spin information. Our results push the boundary of what is currently known about the dynamics of domain walls in 2D vdW ferromagnets and unveil strategies to design ultrathin, high-speed, and high-frequency spintronic devices.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Group III Phosphates as Two-Dimensional van der Waals Materials
    Altman, Eric I.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (30): : 16328 - 16341
  • [32] Magnetic two-dimensional van der Waals materials for spintronic devices*
    Zhang, Yu
    Xu, Hongjun
    Feng, Jiafeng
    Wu, Hao
    Yu, Guoqiang
    Han, Xiufeng
    [J]. CHINESE PHYSICS B, 2021, 30 (11)
  • [33] Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures
    Lee, Jae Yoon
    Shin, Jun-Hwan
    Lee, Gwan-Hyoung
    Lee, Chul-Ho
    [J]. NANOMATERIALS, 2016, 6 (11)
  • [34] Two-dimensional van der Waals spinterfaces and magnetic-interfaces
    Dayen, Jean-Francois
    Ray, Soumya J.
    Karis, Olof
    Vera-Marun, Ivan J.
    Kamalakar, M. Venkata
    [J]. APPLIED PHYSICS REVIEWS, 2020, 7 (01):
  • [35] General synthesis of two-dimensional van der Waals heterostructure arrays
    Li, Jia
    Yang, Xiangdong
    Liu, Yang
    Huang, Bolong
    Wu, Ruixia
    Zhang, Zhengwei
    Zhao, Bei
    Ma, Huifang
    Dang, Weiqi
    Wei, Zheng
    Wang, Kai
    Lin, Zhaoyang
    Yan, Xingxu
    Sun, Mingzi
    Li, Bo
    Pan, Xiaoqing
    Luo, Jun
    Zhang, Guangyu
    Liu, Yuan
    Huang, Yu
    Duan, Xidong
    Duan, Xiangfeng
    [J]. NATURE, 2020, 579 (7799) : 368 - +
  • [36] van der Waals Contact for Two-Dimensional Transition Metal Dichalcogenides
    Ma, Likuan
    Wang, Yiliu
    Liu, Yuan
    [J]. CHEMICAL REVIEWS, 2024, 124 (05) : 2583 - 2616
  • [37] Magnetic two-dimensional van der Waals materials for spintronic devices
    张雨
    许洪军
    丰家峰
    吴昊
    于国强
    韩秀峰
    [J]. Chinese Physics B, 2021, 30 (11) : 658 - 667
  • [38] Two-dimensional heavy fermions in the van der Waals metal CeSiI
    Posey, Victoria A.
    Turkel, Simon
    Rezaee, Mehdi
    Devarakonda, Aravind
    Kundu, Asish K.
    Ong, Chin Shen
    Thinel, Morgan
    Chica, Daniel G.
    Vitalone, Rocco A.
    Jing, Ran
    Xu, Suheng
    Needell, David R.
    Meirzadeh, Elena
    Feuer, Margalit L.
    Jindal, Apoorv
    Cui, Xiaomeng
    Valla, Tonica
    Thunstrom, Patrik
    Yilmaz, Turgut
    Vescovo, Elio
    Graf, David
    Zhu, Xiaoyang
    Scheie, Allen
    May, Andrew F.
    Eriksson, Olle
    Basov, D. N.
    Dean, Cory R.
    Rubio, Angel
    Kim, Philip
    Ziebel, Michael E.
    Millis, Andrew J.
    Pasupathy, Abhay N.
    Roy, Xavier
    [J]. NATURE, 2024, 625 (7995) : 483 - 488
  • [39] Magnetic proximity effect in two-dimensional van der Waals heterostructure
    Bora, M.
    Deb, P.
    [J]. JOURNAL OF PHYSICS-MATERIALS, 2021, 4 (03):
  • [40] Two-Dimensional van der Waals Ferroelectrics: Scientific and Technological Opportunities
    Wu, Menghao
    [J]. ACS NANO, 2021, 15 (06) : 9229 - 9237