Domain wall dynamics in two-dimensional van der Waals ferromagnets

被引:19
|
作者
Abdul-Wahab, Dina [1 ]
Iacocca, Ezio [2 ,3 ]
Evans, Richard F. L. [4 ]
Bedoya-Pinto, Amilcar [5 ]
Parkin, Stuart [5 ]
Novoselov, Kostya S. [6 ,7 ,8 ]
Santos, Elton J. G. [9 ,10 ]
机构
[1] Queens Univ Belfast, Sch Math & Phys, Belfast BT7, Antrim, North Ireland
[2] Univ Colorado, Ctr Magnetism & Magnet Mat, Colorado Springs, CO 80918 USA
[3] Northumbria Univ, Dept Math Phys & Elect Engn, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
[4] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
[5] Max Planck Inst Microstruct Phys, NISE Dept, Halle, Germany
[6] Natl Univ Singapore, Inst Funct Intelligent Mat, S9 4 Sci Dr 2, Singapore 117544, Singapore
[7] Chongqing 2D Mat Inst, Liangjiang New Area, Chongqing 400714, Peoples R China
[8] Univ Manchester, Natl Graphene Inst, Oxford Rd, Manchester M13 9PL, Lancs, England
[9] Univ Edinburgh, Inst Condensed Matter Phys & Complex Syst, Sch Phys & Astron, Edinburgh EH9 3FD, Midlothian, Scotland
[10] Univ Edinburgh, Higgs Ctr Theoret Phys, Edinburgh EH9 3FD, Midlothian, Scotland
来源
APPLIED PHYSICS REVIEWS | 2021年 / 8卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
CURRENT-DRIVEN DYNAMICS; SPIN TORQUE; MOTION; GATE;
D O I
10.1063/5.0062541
中图分类号
O59 [应用物理学];
学科分类号
摘要
Domain wall motion is in the core of many information technologies ranging from storage [Beach et al., J. Magn. Magn. Mater. 320, 1272-1281 (2008)], processing [Tatara et al., Phys. Rep. 468, 213-301 (2008)], and sensing [Ralph and Stiles, J. Magn. Magn. Mater. 320, 1190-1216 (2008)] up to novel racetrack memory architectures [Parkin et al., Science 320, 190-194 (2008)]. The finding of magnetism in two-dimensional (2D) van der Waals (vdW) materials [Huang et al., Nature 546, 270 (2017); Gong et al., Nature 546, 265-269 (2017); Guguchia et al., Sci. Adv. 4, eaat3672 (2018); Klein et al., Science 360, 1218-1222 (2018)] has offered a new frontier for the exploration and understanding of domain walls at the limit of few atom-thick layers. However, to use 2D vdW magnets for building spintronics nanodevices such as domain-wall based logic [Allwood et al., Science 309, 1688-1692 (2005); Luo et al., Nature 579, 214-218 (2020); Xu et al., Nat. Nanotechnol. 3, 97-100 (2008)], it is required to gain control of their domain wall dynamics by external driving forces such as spin-polarized currents or magnetic fields, which have so far been elusive. Here, we show that electric currents as well as magnetic fields can efficiently move domain walls in the recently discovered 2D vdW magnets CrI3 and CrBr3 at low temperatures and robust down to monolayer. We realize field- and current-driven domain wall motion with velocities up to 1020 m s(-1), which are comparable to the state-of-the-art materials for domain-wall based applications [Yang et al., Nat. Nanotechnol. 10, 221-226 (2015); Woo et al., Nat. Mater. 15, 501-506 (2016); Velez et al., Nat. Commun. 10, 4750 (2019); Siddiqui et al., Phys. Rev. Lett. 121, 057701 (2018); Ryu et al., Nat. Nanotechnol. 8, 527-533 (2013)]. Domain walls keep their coherence driven by the spin-transfer torque induced by the current and magnetic fields up to large values of about 12 x 10 9 A cm(-2) and 5 T, respectively. For larger magnitudes of current or field, a transition to a hydrodynamic spin-liquid regime is observed with the emission of a periodic train of spin-wave solitons with modulational instability [Rabinovich and Trubetskov, Oscillations and Waves: In Linear and Nonlinear Systems, Mathematics and its Applications (Springer Netherlands, 2011)]. The emitted waveform achieves terahertz (THz) frequency in a wide range of fields and current densities, which opens up perspectives for reconfigurable magnonic devices. Moreover, we found that these spin-waves can transport spin angular momentum through the layers over distances as long as 10 mu m without losses for the transport of spin information. Our results push the boundary of what is currently known about the dynamics of domain walls in 2D vdW ferromagnets and unveil strategies to design ultrathin, high-speed, and high-frequency spintronic devices.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Two-dimensional van der Waals materials
    Ajayan, Pulickel
    Kim, Philip
    Banerjee, Kaustav
    [J]. PHYSICS TODAY, 2016, 69 (09) : 39 - 44
  • [2] Towards two-dimensional van der Waals ferroelectrics
    Chuanshou Wang
    Lu You
    David Cobden
    Junling Wang
    [J]. Nature Materials, 2023, 22 : 542 - 552
  • [3] Excitons in two-dimensional van der Waals heterostructures
    Liu, Hao
    Zong, Yixin
    Wang, Pan
    Wen, Hongyu
    Wu, Haibin
    Xia, Jianbai
    Wei, Zhongming
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (05)
  • [4] Towards two-dimensional van der Waals ferroelectrics
    Wang, Chuanshou
    You, Lu
    Cobden, David
    Wang, Junling
    [J]. NATURE MATERIALS, 2023, 22 (05) : 542 - 552
  • [5] Magnetism in two-dimensional van der Waals materials
    Burch, Kenneth S.
    Mandrus, David
    Park, Je-Geun
    [J]. NATURE, 2018, 563 (7729) : 47 - 52
  • [6] The rise of two-dimensional van der Waals ferroelectrics
    Wu, Menghao
    Jena, Puru
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2018, 8 (05)
  • [7] Magnetism in two-dimensional van der Waals materials
    Kenneth S. Burch
    David Mandrus
    Je-Geun Park
    [J]. Nature, 2018, 563 : 47 - 52
  • [8] Domain-dependent strain and stacking in two-dimensional van der Waals ferroelectrics
    Chuqiao Shi
    Nannan Mao
    Kena Zhang
    Tianyi Zhang
    Ming-Hui Chiu
    Kenna Ashen
    Bo Wang
    Xiuyu Tang
    Galio Guo
    Shiming Lei
    Longqing Chen
    Ye Cao
    Xiaofeng Qian
    Jing Kong
    Yimo Han
    [J]. Nature Communications, 14
  • [9] Domain-dependent strain and stacking in two-dimensional van der Waals ferroelectrics
    Shi, Chuqiao
    Mao, Nannan
    Zhang, Kena
    Zhang, Tianyi
    Chiu, Ming-Hui
    Ashen, Kenna
    Wang, Bo
    Tang, Xiuyu
    Guo, Galio
    Lei, Shiming
    Chen, Longqing
    Cao, Ye
    Qian, Xiaofeng
    Kong, Jing
    Han, Yimo
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [10] Two-dimensional capillaries assembled by van der Waals heterostructures
    Ma, Jiaojiao
    Guan, Kaiwen
    Jiang, Yu
    Cao, Yang
    Hu, Sheng
    [J]. NANO RESEARCH, 2023, 16 (03) : 4119 - 4129