Healing of nanocracks by collision cascades in nickel

被引:7
|
作者
Chen, Peng [1 ]
Chesetti, Advika [2 ]
Demkowicz, Michael J. [1 ]
机构
[1] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
[2] Univ North Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA
关键词
Crack healing; Collision cascade; Thermal spike; Molecular dynamics; MOLECULAR-DYNAMICS; RADIATION-DAMAGE; FATIGUE BEHAVIOR; THERMAL SPIKES; POINT-DEFECTS; METALS; DISPLACEMENT; ALLOYS; STABILITY; EVOLUTION;
D O I
10.1016/j.jnucmat.2021.153124
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We use molecular dynamics simulations to investigate the interaction between collision cascades and pre-existing nanocracks in nickel (Ni). We find that collision cascades cause the cracks to heal whenever a cascade initiates a thermal spike whose core overlaps with the crack. Moreover, crack healing affects the distribution of radiation-induced defects generated during a collision cascade: defect clusters, such as dislocations and stacking fault tetrahedra, dominate in the presence of crack healing, while isolated point defects dominate in its absence. This work indicates that irradiation may reduce the number of pre-existing crack-like flaws in metallic components, potentially improving their mechanical resilience. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] THE SPATIAL STRUCTURE OF COLLISION CASCADES
    WINTERBON, KB
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 1982, 60 (1-4): : 199 - 207
  • [22] THE TEMPORAL DEVELOPMENT OF COLLISION CASCADES IN THE BINARY-COLLISION APPROXIMATION
    ROBINSON, MT
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1990, 48 (1-4): : 408 - 413
  • [23] Understanding collision cascades in molecular solids
    Krantzman, KD
    Postawa, Z
    Garrison, BJ
    Winograd, N
    Stuart, SJ
    Harrison, JA
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2001, 180 : 159 - 163
  • [24] Inverse Kirkendall mixing in collision cascades
    Nordlund, K
    Averback, RS
    PHYSICAL REVIEW B, 1999, 59 (01) : 20 - 23
  • [25] The particle spectra in multicomponent collision cascades
    Jakas, MM
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (22) : 4126 - 4130
  • [26] Fragmentation model dependence of collision cascades
    Kobayashi, Hiroshi
    Tanaka, Hidekazu
    ICARUS, 2010, 206 (02) : 735 - 746
  • [27] Atomistic simulation of collision cascades in zircon
    Devanathan, R.
    Corrales, L. R.
    Weber, W. J.
    Chartier, A.
    Meis, C.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2006, 250 (46-49): : 46 - 49
  • [28] 2-COMPONENT COLLISION CASCADES
    AKHIEZER, IA
    SPOLNIK, ZA
    FIZIKA TVERDOGO TELA, 1982, 24 (10): : 3188 - 3190
  • [29] TIME-DEPENDENT COLLISION CASCADES
    CORNGOLD, NR
    PHYSICAL REVIEW A, 1989, 39 (04): : 2126 - 2132
  • [30] Particle spectra in multicompenent collision cascades
    Zhang, ZL
    RARE METAL MATERIALS AND ENGINEERING, 2002, 31 (02) : 96 - 98