Data-driven exploration of orographic enhancement of precipitation

被引:3
|
作者
Foresti, L. [1 ]
Kanevski, M. [1 ]
Pozdnoukhov, A. [2 ]
机构
[1] Univ Lausanne, Inst Geomat & Anal Risk, CH-1015 Lausanne, Switzerland
[2] Natl Univ Ireland Maynooth, Natl Ctr Geocomputat, Maynooth, Kildare, Ireland
关键词
RADAR; FORECAST; FLOW;
D O I
10.5194/asr-6-129-2011
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study presents a methodology to analyse orographic enhancement of precipitation using sequences of radar images and a digital elevation model. Image processing techniques are applied to extract precipitation cells from radar imagery. DEM is used to derive the topographic indices potentially relevant to orographic precipitation enhancement at different spatial scales, e.g. terrain convexity and slope exposure to mesoscale flows. Two recently developed machine learning algorithms are then used to analyse the relationship between the repeatability of precipitation patterns and the underlying topography. Spectral clustering is first used to characterize stratification of the precipitation cells according to different mesoscale flows and exposure to the crest of the Alps. At a second step, support vector machine classifiers are applied to build a computational model which discriminates persistent precipitation cells from all the others (not showing a relationship to topography) in the space of topographic conditioning factors. Upwind slopes and hill tops were found to be the topographic features leading to precipitation repeatability and persistence. Maps of orographic enhancement susceptibility can be computed for a given flow, topography and forecasted smooth precipitation fields and used to improve nowcasting models or correct windward and leeward biases in numerical weather prediction models.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 50 条
  • [21] Algebraic reasoning for the enhancement of data-driven building reconstructions
    Meidow, Jochen
    Hammer, Horst
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 114 : 179 - 190
  • [22] Data-driven enhancement of fracture paths in random composites
    Guilleminot, Johann
    Dolbow, John E.
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 2020, 103
  • [23] A data-driven approach for high accurate spatiotemporal precipitation estimation
    Pham, Minh Khiem
    Nguyen, Phi Le
    Vu, Viet Hung
    Truong, Thao Nguyen
    Vo-Van, Hoa
    Ngo-Duc, Thanh
    [J]. NEURAL COMPUTING & APPLICATIONS, 2024, 36 (11): : 6099 - 6118
  • [24] A data-driven approach for high accurate spatiotemporal precipitation estimation
    Minh Khiem Pham
    Phi Le Nguyen
    Viet Hung Vu
    Thao Nguyen Truong
    Hoa Vo-Van
    Thanh Ngo-Duc
    [J]. Neural Computing and Applications, 2024, 36 : 6099 - 6118
  • [25] Daytime affect and sleep EEG activity: A data-driven exploration
    Zhang, Jin-Xiao
    ten Brink, Maia
    Yan, Yan
    Goldstein-Piekarski, Andrea
    Krause, Adam J.
    Manber, Rachel
    Kreibig, Sylvia
    Gross, James J.
    [J]. JOURNAL OF SLEEP RESEARCH, 2023, 32 (05)
  • [26] Data-driven exploration of swarmalators with second-order harmonics
    Senthamizhan, R.
    Gopal, R.
    Chandrasekar, V. K.
    [J]. PHYSICAL REVIEW E, 2024, 109 (06)
  • [27] Hierarchically Structured Allotropes of Phosphorus from Data-Driven Exploration
    Deringer, Volker L.
    Pickard, Chris J.
    Proserpio, Davide M.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (37) : 15880 - 15885
  • [28] Data-Driven Vulnerability Exploration for Design Phase System Analysis
    Bakirtzis, Georgios
    Simon, Brandon J.
    Collins, Aidan G.
    Fleming, Cody Harrison
    Elks, Carl R.
    [J]. IEEE SYSTEMS JOURNAL, 2020, 14 (04): : 4864 - 4873
  • [29] Exploration of Axial Fan Design Space with Data-Driven Approach
    Angelini, Gino
    Corsini, Alessandro
    Delibra, Giovanni
    Tieghi, Lorenzo
    [J]. INTERNATIONAL JOURNAL OF TURBOMACHINERY PROPULSION AND POWER, 2019, 4 (02)
  • [30] Data-driven agent-based exploration of customer behavior
    Bell, David
    Mgbemena, Chidozie
    [J]. SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL, 2018, 94 (03): : 195 - 212