A pathway analysis method for genome-wide association studies

被引:11
|
作者
Shahbaba, Babak [1 ]
Shachaf, Catherine M. [2 ]
Yu, Zhaoxia [1 ]
机构
[1] Univ Calif Irvine, Dept Stat, Irvine, CA 92717 USA
[2] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
基金
美国国家卫生研究院; 英国惠康基金;
关键词
hierarchical; pathway; genome-wide; uncertainty; SET ENRICHMENT ANALYSIS; GENE; EXPRESSION; DISTRIBUTIONS; INFORMATION; SELECTION; DISEASES; UTILITY; SNPS;
D O I
10.1002/sim.4477
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
For genome-wide association studies, we propose a new method for identifying significant biological pathways. In this approach, we aggregate data across single-nucleotide polymorphisms to obtain summary measures at the gene level. We then use a hierarchical Bayesian model, which takes the gene-level summary measures as data, in order to evaluate the relevance of each pathway to an outcome of interest (e.g., disease status). Although shifting the focus of analysis from individual genes to pathways has proven to improve the statistical power and provide more robust results, such methods tend to eliminate a large number of genes whose pathways are unknown. For these genes, we propose to use a Bayesian multinomial logit model to predict the associated pathways by using the genes with known pathways as the training data. Our hierarchical Bayesian model takes the uncertainty regarding the pathway predictions into account while assessing the significance of pathways. We apply our method to two independent studies on type 2 diabetes and show that the overlap between the results from the two studies is statistically significant. We also evaluate our approach on the basis of simulated data. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:988 / 1000
页数:13
相关论文
共 50 条
  • [31] Genome-wide association studies
    [J]. Nature Reviews Methods Primers, 1
  • [32] Regularized regression method for genome-wide association studies
    Jin Liu
    Kai Wang
    Shuangge Ma
    Jian Huang
    [J]. BMC Proceedings, 5 (Suppl 9)
  • [33] A variable selection method for genome-wide association studies
    He, Qianchuan
    Lin, Dan-Yu
    [J]. BIOINFORMATICS, 2011, 27 (01) : 1 - 8
  • [34] Genome-wide association studies
    Uffelmann, Emil
    Huang, Qin Qin
    Munung, Nchangwi Syntia
    de Vries, Jantina
    Okada, Yukinori
    Martin, Alicia R.
    Martin, Hilary C.
    Lappalainen, Tuuli
    Posthuma, Danielle
    [J]. NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [35] Genome-Wide Association Studies
    Guo, Xiuqing
    Rotter, Jerome I.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2019, 322 (17): : 1705 - 1706
  • [36] SNP Set Association Analysis for Genome-Wide Association Studies
    Cai, Min
    Dai, Hui
    Qiu, Yongyong
    Zhao, Yang
    Zhang, Ruyang
    Chu, Minjie
    Dai, Juncheng
    Hu, Zhibin
    Shen, Hongbing
    Chen, Feng
    [J]. PLOS ONE, 2013, 8 (05):
  • [37] GENOME-WIDE ASSOCIATION, CANDIDATE GENE, AND PATHWAY ANALYSIS STUDIES OF PLACENTAL ABRUPTION.
    Workalemahu, Tsegaselassie
    Enquobahrie, Daniel
    Sanchez, Sixto
    Ananth, Cande
    Pacora, Percy
    Liang, Liming
    Williams, Michelle
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2013, 177 : S98 - S98
  • [38] Pathway and network-based analysis of genome-wide association studies in multiple sclerosis
    Baranzini, Sergio E.
    Galwey, Nicholas W.
    Wang, Joanne
    Khankhanian, Pouya
    Lindberg, Raija
    Pelletier, Daniel
    Wu, Wen
    Uitdehaag, Bernard M. J.
    Kappos, Ludwig
    Polman, Chris H.
    Matthews, Paul M.
    Hauser, Stephen L.
    Gibson, Rachel A.
    Oksenberg, Jorge R.
    Barnes, Michael R.
    [J]. HUMAN MOLECULAR GENETICS, 2009, 18 (11) : 2078 - 2090
  • [39] Pathway-based analysis of primary biliary cirrhosis genome-wide association studies
    S P Kar
    M F Seldin
    W Chen
    E Lu
    G M Hirschfield
    P Invernizzi
    J Heathcote
    D Cusi
    M E Gershwin
    K A Siminovitch
    C I Amos
    [J]. Genes & Immunity, 2013, 14 : 179 - 186
  • [40] Pathway-based analysis of primary biliary cirrhosis genome-wide association studies
    Kar, S. P.
    Seldin, M. F.
    Chen, W.
    Lu, E.
    Hirschfield, G. M.
    Invernizzi, P.
    Heathcote, J.
    Cusi, D.
    Gershwin, M. E.
    Siminovitch, K. A.
    Amos, C. I.
    [J]. GENES AND IMMUNITY, 2013, 14 (03) : 179 - 186