Instantons and Kahler geometry of nilpotent orbits

被引:0
|
作者
Brylinski, R [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The first obstacle in building a Geometric Quantization theory for nilpotent orbits of a real semisimple Lie group has been the lack of an invariant polarization. In order to generalize the Fock space construction of the quantum mechanical oscillator, a polarization of the symplectic orbit invariant under the maximal compact subgroup is required. In this paper, we explain how such a polarization on the orbit arises naturally from the work of Kronheimer and Vergne. This occurs in the context of hyperkahler geometry. The polarization is complex and in fact makes the orbit into a (positive) Kahler manifold. We study the geometry of this Kahler structure, the Vergne diffeomorphism, and the Hamiltonian functions giving the symmetry. We indicate how all this fits into a quantization program.
引用
收藏
页码:85 / 125
页数:41
相关论文
共 50 条
  • [21] Series of nilpotent orbits
    Landsberg, JM
    Manivel, L
    Westbury, BW
    [J]. EXPERIMENTAL MATHEMATICS, 2004, 13 (01) : 13 - 29
  • [22] COMPLEXITY AND NILPOTENT ORBITS
    PANYUSHEV, DI
    [J]. MANUSCRIPTA MATHEMATICA, 1994, 83 (3-4) : 223 - 237
  • [23] REMARK ON NILPOTENT ORBITS
    WOLF, JA
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 51 (01) : 213 - 216
  • [24] ON THE SINGULARITIES OF NILPOTENT ORBITS
    HINICH, V
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1991, 73 (03) : 297 - 308
  • [25] ORBITS OF NILPOTENT MATRICES
    DJOKOVIC, DZ
    MALZAN, J
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1980, 32 (AUG) : 157 - 158
  • [26] EINSTEIN-KAHLER SURFACES AND GRAVITATIONAL INSTANTONS
    CATENACCI, R
    REINA, C
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1982, 14 (03) : 255 - 277
  • [27] Quadratic presentations and nilpotent Kahler groups
    Carlson, JA
    Toledo, D
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 1995, 5 (03) : 359 - 377
  • [28] Inflation from nilpotent Kahler corrections
    McDonough, Evan
    Scalisi, Marco
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (11):
  • [29] Hyperkahler cones and instantons on quaternionic Kahler manifolds
    Devchand, Chandrashekar
    Pontecorvo, Massimiliano
    Spiro, Andrea
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2020, 58 (03) : 291 - 323
  • [30] INSTANTONS AND ALGEBRAIC GEOMETRY
    ATIYAH, MF
    WARD, RS
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 55 (02) : 117 - 124