Linear plus quadratic (LPQ) quasiminimax estimation in the linear regression model

被引:0
|
作者
Knautz, H [1 ]
机构
[1] UNIV HAMBURG, INST STAT & ECONOMETR, D-20146 HAMBURG, GERMANY
关键词
linear regression model; minimax estimation linear plus quadratic estimator;
D O I
10.1007/BF00046991
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If the errors in the linear regression model are assumed to be independent with nonvanishing third and finite fourth moments, then it is possible to improve all linear estimators by so-called linear plus quadratic (LPQ) estimators. These consist of linear and quadratic terms in the endogeneous variable and depend on the unknown moments of the errors which, in general, have to be estimated from the data. In this paper, we will use LPQ estimators for quasiminimax estimation and some related problems.
引用
收藏
页码:97 / 111
页数:15
相关论文
共 50 条
  • [41] ESTIMATION OF BIAS IN CLASSICAL LINEAR-REGRESSION SLOPE WHEN PROPER MODEL IS FUNCTIONAL LINEAR-REGRESSION
    REED, AH
    WU, GT
    COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1977, 6 (05): : 405 - 416
  • [42] Regression-based Linear Quadratic Regulator
    Carlos, Hugo
    Hayet, Jean-Bernard
    Murrieta-Cid, Rafael
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 3001 - 3006
  • [43] Functional partial linear regression with quadratic regression for the multivariate predictor
    Huang, Huiyu
    Qin, Meng
    Qing, Peng
    Wang, Guochang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [44] Robust Estimation for Partial Functional Linear Regression Model Based on Modal Regression
    YU Ping
    ZHU Zhongyi
    SHI Jianhong
    AI Xikai
    Journal of Systems Science & Complexity, 2020, 33 (02) : 527 - 544
  • [45] Testing the hypothesis of a generalized linear regression model using nonparametric regression estimation
    Celia, Rodriguez-Campos, M.
    Gonzalez-Manteiga, W.
    Cao, R.
    Journal of Statistical Planning and Inference, 67 (01):
  • [46] Testing the hypothesis of a generalized linear regression model using nonparametric regression estimation
    Rodriguez-Campos, MC
    Gonzalez-Manteiga, W
    Cao, R
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 67 (01) : 99 - 122
  • [47] Robust Estimation for Partial Functional Linear Regression Model Based on Modal Regression
    Ping Yu
    Zhongyi Zhu
    Jianhong Shi
    Xikai Ai
    Journal of Systems Science and Complexity, 2020, 33 : 527 - 544
  • [48] Robust Estimation for Partial Functional Linear Regression Model Based on Modal Regression
    Yu, Ping
    Zhu, Zhongyi
    Shi, Jianhong
    Ai, Xikai
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2020, 33 (02) : 527 - 544
  • [49] SEQUENTIAL POINT ESTIMATION OF REGRESSION PARAMETERS IN A LINEAR-MODEL
    CHATURVEDI, A
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1987, 39 (01) : 55 - 67